
## **Emerging Technologies**

#### Insuring What Has Not Been Insured Before





#### **The Scale of Things - Nanometers and More**



## Issues in Insuring Emerging Technologies

- Lack of loss experience
  - Lack of data / lack of expertise / rapid change
- Systems risks
  - Technological risk
    - Quality, Reliability, Cost
    - Competing technologies
  - Regulatory & political risk
    - including loss of government subsidy

#### Some Relevant Tools

- Risk models
  - for pricing insurance
  - for modeling portfolio risk
- Models that combine data and expert opinion
- Procedures for efficiently updating models as new data becomes available
- Techniques for incorporating systems risk into models

## Some Potentially Insurable Losses

- Property damage
- Business interruption & extra expense
- Products & Operations liability
- Systems performance shortfall
- Other revenue losses & cost increases
- Equipment Breakdown: PD and resulting BI & EE

## Equipment Breakdown - Basic Model Elements

- External hazards & environmental influences
- Vulnerabilities and failure modes
- Loss frequency distributions
- Loss severity distributions

#### **External Hazards for EB**

- May cause losses or may simply increase the probability of losses
- Weather: temperature, humidity, dust
- If all risk coverage: wind, flood, lightning, quake etc.
- Power outage & power quality disturbances
- Computer & communications network disturbances

## EB Failure Modes - New Technologies

- First step: identify, don't quantify
- Using components with known failure modes? Identify how component failures can interact to cause system failures
- Using novel components? Look at basic failure mechanisms

#### Some Basic Failure Mechanisms

- Chemical
  - Fire, chemical explosion, oxidation, corrosion, migration, deposition, crosslinking
- Mechanical
  - Cracking, deforming, scoring, erosion, melting, annealing
- Programming Error

## Loss Frequency Distributions

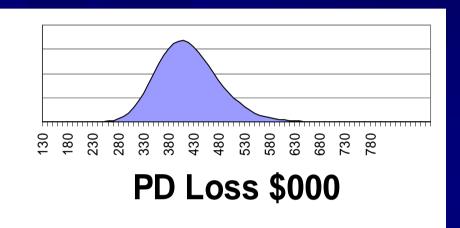
- Frequencies of failure by component & failure mode
- Choice of exposure unit
- Hypothetical data for illustration only: new 1.5 MW wind turbine

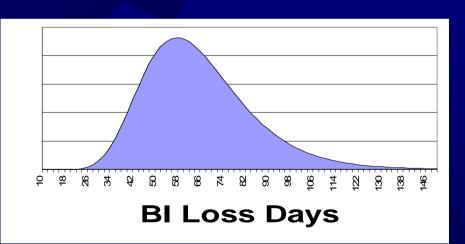
| Component   | Failure Mode                             | Failure Rate per<br>Unit per Year |
|-------------|------------------------------------------|-----------------------------------|
| gearbox     | mechanical failure                       | .01                               |
| entire unit | lightning strike causing electrical fire | .002                              |

#### Loss Frequency Model

- Depends on characteristics of the unit a multivariate frequency model
- Hypothetical example: gearbox failure rate (model A2 is a new design with no gearbox)

| Model | Maintenance | Failure Rate |
|-------|-------------|--------------|
| A1    | Good        | 0.01         |
| A2    | Good        | 0.00         |
| B1    | Good        | 0.02         |
| A1    | Poor        | 0.03         |
| A2    | Poor        | 0.00         |
| B1    | Poor        | 0.06         |


#### Loss Frequency Model (continued)


 Hypothetical example: electrical fire from lightning strike

|       | Lightning Strike |         |
|-------|------------------|---------|
|       | Frequency at     | Failure |
| Model | Location of Unit | Rate    |
| A1    | High             | 0.020   |
| A2    | High             | 0.020   |
| B1    | High             | 0.030   |
| A1    | Medium           | 0.004   |
| A2    | Medium           | 0.004   |
| B1    | Medium           | 0.006   |
| A1    | Low              | 0.002   |
| A2    | Low              | 0.002   |
| B1    | Low              | 0.003   |

#### Loss Severity Distributions

- Severity distributions
   by
   component & failure mode
- Hypothetical example: gearbox failure, model A1:





#### Pure Premium

- Pure Premium = expected loss per exposure unit (such as a unit-year)
- May include certain allocated expenses
- Does not include unallocated expenses
- Does not include profit
- Does not incorporate risk loads

# Pure Premium Calculation for a Specified Unit

- For each failure mode, multiply expected frequency and expected severity to obtain the pure premium for that failure mode
- Add up the pure premium for each failure mode to get the pure premium for the unit
- The pure premium for the unit depends on the unit's characteristics and exposures

#### Portfolio Risk for a Collection of Units

- Add up the pure premium for each exposure unit to get the pure premium for the portfolio
- Two portfolios may have the same pure premium but very different likelihoods of high portfolio losses
- Positive correlations increase the likelihood of high portfolio losses
  - Correlated failure modes within a unit
  - Correlated failure modes between units (more important)

### Correlations for the Hypothetical Wind Turbine Example

- If we are fairly certain about the technology and its implementation then:
- Gearbox failures are statistically uncorrelated between units (approximately)
- Electrical failures due to lightning are correlated between units
  - A single thunderstorm at a wind farm may cause
    multiple failures
  - A year with a large number of thunderstorms will produce more portfolio failures, on average

#### More Correlations

- If we are uncertain about the technology and its implementation then:
- Gearbox failures are now positively correlated between units
  - The pure premium remains the same but our losses will be higher than expected if:
    - our portfolio consists of poorly maintained units
    - our portfolio consists of non-robustly designed units
  - If the opposite is true, losses will be lower than expected - but we don't know which will be the case

#### A Hypothetical Portfolio of Identical Units

- The design may be robust or non-robust
- We don't know which is true
- If Design is Robust then Pure Premium = \$10M, Profit = \$2M
- If Design is Non-Robust then Pure Premium = \$30M, Loss = \$18M
- If our best estimate of the probability of a robust design is 95%, then the pure premium
  = .95\*10 + .05\*20 = \$11M and expected profit = \$1M

### Hypothetical Portfolio (continued)

- The portfolio is profitable
- However, there is a 5% chance of an \$18M loss
- The portfolio is not diversified due to the equipment design risk common to all units in the portfolio

#### Quantifying the Value of Information

- The quantified Value of Information is
  - the expected payoff using the best strategy with information
- Minus
  - the expected payoff using the best strategy without information

#### Value of Information Example

- For the hypothetical portfolio:
- Best strategy without knowing design robustness is to write the business (expected profit = \$1M)
- Best strategy with knowledge of design robustness is
  - Write the business if the design is found to be robust (expected profit = \$2M)
  - Don't write the business otherwise (expected profit = \$0)
- There is a 95% probability that the design is robust, so the expected payoff with information is .95\*2+.05\*0 = \$1.9M
- The difference, \$1.9M \$1M = \$0.9M, is the value in this context of finding out whether the design is robust

## Developing Risk Models for New Technology

- How to develop risk models?
- For a well understood physical system -Physical Models
- For a stable process with an extensive quantified history - Statistical Models
- For new technology, may have lack of physical model and data - turn to experts?

## The Role of Expert Opinion

- More important in the absence of physical models and data
- Should be given progressively less weight as relevant data accumulates
- Should be given less weight as accepted physical models become available
- Needs to be quantified to produce frequency and severity models
- A probability framework is essential

## The Importance of Quantifying Expert Uncertainty

- Two sorts of uncertainty: uncertainty in the mind of each expert and lack of agreement between experts
- Quantifying uncertainty helps us balance the value of more information-gathering against the value of immediate action
- It helps us to determine the weight to be given to accumulating data. More expert uncertainty requires more sensitivity to incoming data signals but also more sensitivity to incoming data noise

## Tools for Quantifying Expert Uncertainty

- Ask for confidence intervals from individual experts
- Use a betting framework (with notional money)
- Use tools to develop underlying structure from the response a series of questions and quantify the level of uncertainty (and inconsistency) within an expert
  - AHP mathematical technique for developing underlying dimensions from a collection of expert's pairwise comparisons

#### **Multiple Experts**

- Risky not to elicit from multiple experts
- Best to elicit separately at first to avoid one expert influencing another, groupthink and clashes of ego
- May be useful to follow up with group discussions
- Standard statistical tools can be use to quantify the disagreement between experts

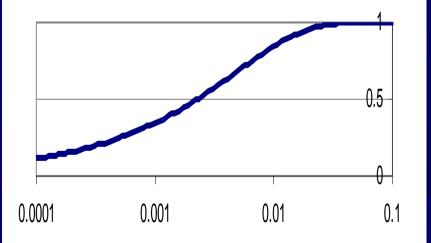
#### Why Might Experts Disagree

- Different interpretations of the question. Questions need to be well-defined. Avoid vague or fuzzy concepts.
- Lack of understanding or rejection of probability framework
- Differing experiences

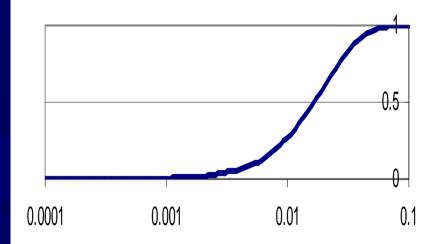
#### Finding Hidden Data

- A useful step is to consider the basis for the expert's opinion
- Is it based on a formal or informal analysis of data? Can this data be obtained? If so, use this data to help build the risk model
- Is it based on a document that can be obtained?
- If the expert's opinion is based on a synthesis of a wide variety of facts, use the expert

#### Combining Expert Opinion and Data


- Informal procedures
  - switch to data-based model when "enough" data
- Formal procedures
  - Bayesian updating
    - well-established mathematics
    - guaranteed logical consistency
    - make require heavy computing

## Simplified Example of Bayesian Updating


- Two failure modes
- Want failure rate for each mode
- Start with expert elicitation, no data
- After 3 months of exposure for a portfolio of units, update failure probabilities based on portfolio losses

#### **Results from Expert Elicitation**

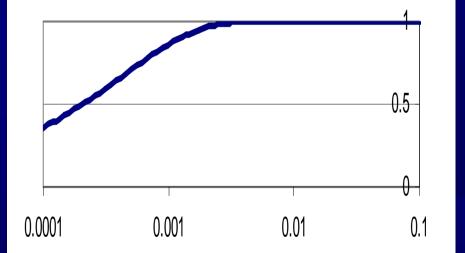
Probability Distribution for Failure Rate A -Experts Only

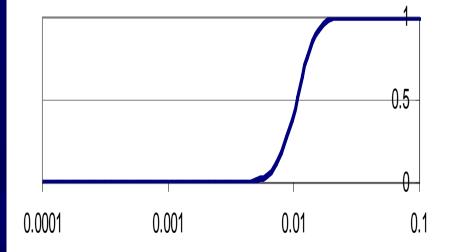


Probability Distribution for Failure Rate B -Experts Only



#### New Data After 3 Months


- 1000 Exposure Units
- 0 losses for failure mode A
- 10 losses for failure mode B


## Results after Bayesian Update with New Data

Probability Distribution for Failure Rate A -

Experts + New Data

Probability Distribution for Failure Rate B -Experts + New Data





### Conclusions

- Importance of eliciting expert opinion and quantifying uncertainties
- Quantifying the value of information
- Importance of efficient and rapid update with new data as it becomes available
- Importance of quantifying portfolio risk correlated losses, equipment design risk