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A Non-Proportional Premium Rating 
Method for Construction Risks 

DANIEL ABRAMSON 

Correct pricing of non-proportional insurance for construction risks must consider not only 
how property values build up over time but also how the Probable Maximum Loss (PML) 
changes. A proper method is developed with analysis of specific cases of interest. 
 

DEFINITIONS 

 
𝑇 Period of Insurance 

𝑣(𝑡) Total value exposed at time 𝑡, 0 ≤ 𝑡 ≤ 𝑇 

𝑚(𝑡) Probable Maximum Loss (PML) at time 𝑡, 0 ≤ 𝑡 ≤ 𝑇 

𝑉 max  𝑣(𝑡) = 𝑣(𝑇) ...................................................................... i.e., Total Insured Value 

𝑀 max 𝑚(𝑡) ..................................................................................... i.e., Maximum PML or simply PML 

𝑉0 Bottom of the layer1 ................................................................ i.e., attachment point 

𝑉1 Top of the layer ......................................................................... i.e., 𝑉1 − 𝑉0 is the layer stretch 

𝑟 Premium per unit value per unit time (or premium rate per unit time) 

𝑃 Total premium for the risk 

𝐸(𝑥) Exposure rating curve applicable to the exposure2 
 

1. THE GENERAL CASE 

 
Note that 𝑟𝑣(𝑡)𝑑𝑡 is the premium for the risk between 𝑡 and 𝑡 + 𝑑𝑡;  𝑟𝑣(𝑡) is the premium 
density.3 The total premium 𝑃 for the risk is: 
 

𝑃 = ∫ 𝑟𝑣(𝑡)𝑑𝑡
𝑇

0

 

 
Hence we can write: 
 

 𝑟 = 𝑃 {∫ 𝑣(𝑡)𝑑𝑡
𝑇

0

}

−1

 (1) 

 

Here we implicitly assumed that 𝑟 is a constant. In fact, 𝑟 may vary with time if the perils, 
coverages or nature of the property insured change. For example, if: 

 Construction methods and materials change significantly during the project term; 

 The project transitions from a construction phase to a testing phase; 

 Windstorm exposure changes throughout the year. 
 

                                                           
1 We ignore underlying deductibles. If a deductible 𝐷 applies, 𝑉0 and 𝑉1 can be replaced with 𝑉0 + 𝐷 and 𝑉1 + 𝐷, but 
then 𝑃 must be replaced with the premium 𝑃′ that would be charged with a zero deductible. This may not be easy to 
determine. It is not correct to write 𝑃 = {1 − 𝐸(𝐷 𝑀⁄ )}𝑃′: the curves 𝐸(𝑥) are not suitable for thin layers close to 
zero, as they do not account for loss frequency and reinstatement. 

2 For 0 ≤ 𝑥 ≤ 1, 𝐸(𝑥) is the proportion of premium for an exposure with PML 𝑄 that should be allocated to the 
primary layer 𝑥𝑄. See Guggisberg, D. (2004) Exposure Rating. Swiss Re. 

3 If 𝑃(𝑡) is the premium for the interval [0, 𝑡], then 𝑃′(𝑡) is the premium density, since the premium for the interval 

𝜎 ≤ 𝑡 ≤ 𝜏 is given by 𝑃(𝜏) − 𝑃(𝜎) = ∫ 𝑃′(𝑡)
𝜏

𝜎
𝑑𝑡. Therefore, we may define 𝑟 ≡ 𝑃′(𝑡) 𝑣(𝑡)⁄ . 
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We will deal with various perils and coverages separately, so we may assume that 𝒓 is constant 
unless otherwise stated. So if ℰ𝑖 is the exposure arising from a particular peril (fire, earthquake, 
flood, etc.) and/or during a particular phase of the project (foundations, erection, testing, etc.) 
between 𝑡 = 𝑡𝑎  and 𝑡 = 𝑡𝑏 , for which a premium 𝑃𝑖 is paid, then 
 

𝑟𝑖 = 𝑃𝑖 {∫ 𝑣(𝑡)𝑑𝑡
𝑡𝑏

𝑡𝑎

}

−1

 

 
In construction insurance, the Probable Maximum Loss (PML) is a loss estimate based on a 
“plausible worst case” scenario (equivalent to the Maximum Foreseeable Loss or Estimated 
Maximum Loss used elsewhere in insurance). A commonly accepted definition is:4 
 

Probable Maximum Loss is an estimate of the maximum loss which could be sustained by the 
insurers as a result of any one occurrence considered by the underwriter to be within the realms 
of probability. This ignores such coincidences and catastrophes which are remote possibilities, 
but which remain highly improbable. 

 
Throughout this paper we assume that any exposure in excess of the PML attracts no premium. 
Therefore, if there is an exposure with PML 𝑚 during an interval ∆𝑡, then a primary layer with 
limit 𝑄 ≤ 𝑚 deserves a proportion 𝐸(𝑄 𝑚⁄ ) of the premium for the interval ∆𝑡, where 𝐸(𝑥) is a 
suitably chosen exposure rating curve. We will apply this principle repeatedly. 
 
We may assume that 𝑉1 ≤ 𝑀 (otherwise we can redefine 𝑉1 = 𝑀). We also assume for the 
moment that the PML function 𝑚(𝑡) is non-decreasing (which is usually the case), as shown in 
Figure 1 below. (This assumption will be relaxed later.) 
 

 
FIGURE 1 

 

                                                           
4 See Heller, H. et al. (2002) Working Group Paper for the Possible Maximum Loss Assessment of Civil Engineering 
Projects. IMIA Paper WGP 19(02)E. 

LAYER
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Let 𝑇0 = inf  {𝑡 :  𝑚(𝑡) > 𝑉0} be the time when 𝑚(𝑡) enters the layer, and 𝑇1 = sup  {𝑡 :  𝑚(𝑡) ≤ 𝑉1} 
be the time when 𝑚(𝑡) exits the layer. If 𝑚 is continuous, 𝑇0 and 𝑇1 can be calculated by solving 
the equations: 
 

 
𝑚(𝑇0) = 𝑉0 

𝑚(𝑇1) = 𝑉1 
(2) 

 
Let 𝐿A, 𝐿B and 𝐿C be the layer premiums for the regions A, B and C. Obviously, 𝐿A = 0 since 
𝑚(𝑡) ≤ 𝑉0. Looking at region B, we see that: 
 

𝐿B = ∫ {1 − 𝐸 (
𝑉0
𝑚(𝑡)

)} 𝑟𝑣(𝑡)𝑑𝑡
𝑇1

𝑇0

 

 
The first term 1 − 𝐸(𝑉0 𝑚(𝑡)⁄ ) is the proportion of premium that should be allocated to the 
layer from 𝑉0 to 𝑚(𝑡), and the second term 𝑟𝑣(𝑡)𝑑𝑡 is the premium for the interval [𝑡, 𝑡 + 𝑑𝑡]. 
 
Similarly for region C: 
 

𝐿C = ∫ {𝐸 (
𝑉1
𝑚(𝑡)

) − 𝐸 (
𝑉0
𝑚(𝑡)

)} 𝑟𝑣(𝑡)𝑑𝑡
𝑇

𝑇1

 

 
The first term 𝐸(𝑉1 𝑚(𝑡)⁄ ) − 𝐸(𝑉0 𝑚(𝑡)⁄ ) is the proportion of premium that should be allocated 
to the layer from 𝑉0 to 𝑉1, and the second term 𝑟𝑣(𝑡)𝑑𝑡 is again the premium for the interval 
[𝑡, 𝑡 + 𝑑𝑡]. 
 
Combining terms, the layer premium 𝐿 = 𝐿A + 𝐿B + 𝐿C is: 
 

 𝐿 = ∫ {1 − 𝐸 (
𝑉0
𝑚(𝑡)

)} 𝑟𝑣(𝑡)𝑑𝑡 + ∫ {𝐸 (
𝑉1
𝑚(𝑡)

) − 𝐸 (
𝑉0
𝑚(𝑡)

)} 𝑟𝑣(𝑡)𝑑𝑡
𝑇

𝑇1

𝑇1

𝑇0

 (3) 

 
or, rearranging terms: 
 

 𝐿 = ∫ 𝑟𝑣(𝑡)𝑑𝑡 − ∫ 𝐸 (
𝑉0
𝑚(𝑡)

) 𝑟𝑣(𝑡)𝑑𝑡
𝑇

𝑇0

+∫ 𝐸 (
𝑉1
𝑚(𝑡)

) 𝑟𝑣(𝑡)𝑑𝑡
𝑇

𝑇1

𝑇1

𝑇0

 (4) 

 
Equation (3) can be written more compactly and generally as follows: 
 

 𝐿 = ∫ {𝐸 (min {
𝑉1
𝑚(𝑡)

, 1}) − 𝐸 (min {
𝑉0
𝑚(𝑡)

, 1})} 𝑟𝑣(𝑡)𝑑𝑡
𝑇

0

 (5) 

 
since 
 

𝐸 (min {
𝑉1
𝑚(𝑡)

, 1}) − 𝐸 (min {
𝑉0
𝑚(𝑡)

, 1}) = {

0 𝑚(𝑡) < 𝑉0

1 − 𝐸(𝑉0 𝑚(𝑡)⁄ ) 𝑉0 ≤ 𝑚(𝑡) < 𝑉1

𝐸(𝑉1 𝑚(𝑡)⁄ ) − 𝐸(𝑉0 𝑚(𝑡)⁄ ) 𝑉1 ≤ 𝑚(𝑡)
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This form is suitable and preferable for programming a computer, since 𝐿 can be calculated 
without solving (2) for 𝑇0 and 𝑇1. Note that (5) is valid for any PML function 𝒎(𝒕), regardless 
of whether it is non-decreasing or continuous. 
 
We will see in Section 4 that when 𝑣(𝑡) is a straight line or an S-shaped curve (or any function 
that is symmetrical under a 180° rotation5), then: 
 

𝑟 =
2𝑃

𝑉𝑇
 

 
In this case, (5) simplifies to: 
 

 𝐿 =
2𝑃

𝑉𝑇
∫ {𝐸 (min {

𝑉1
𝑚(𝑡)

, 1}) − 𝐸 (min {
𝑉0
𝑚(𝑡)

, 1})} 𝑣(𝑡)𝑑𝑡
𝑇

0

 (6) 

 
Primary layers. Note that (5) or (6) may also be used to price a primary layer by setting 𝑉0 = 0, 
causing the second term in curly brackets to vanish. From (5): 
 

 𝐿primary 𝑉1 = ∫ 𝐸 (min {
𝑉1
𝑚(𝑡)

, 1}) 𝑟𝑣(𝑡)𝑑𝑡
𝑇

0

 (7) 

 
and when 𝑣(𝑡) is symmetrical under a 180° rotation: 
 

 𝐿primary 𝑉1 =
2𝑃

𝑉𝑇
∫ 𝐸 (min {

𝑉1
𝑚(𝑡)

, 1}) 𝑣(𝑡)𝑑𝑡
𝑇

0

 (8) 

 
In general, 𝑣(𝑡) is given by some variety of S-shaped curve, 𝑚(𝑡) is determined by the 
underwriter, and 𝐸(𝑥) is an increasing, concave function of the form:6 
 

 
𝐸𝑐(𝑥) =

ln [
(𝛼 − 1)𝛽 + (1 − 𝛼𝛽)𝛽𝑥

1 − 𝛽 ]

ln 𝛼𝛽
 

(9) 

 
where 
 

𝛼 = 𝛼(𝑐) = 𝑒(0.78−0.12𝑐)𝑐 
 

𝛽 = 𝛽(𝑐) = 𝑒3.1−0.15(1+𝑐)𝑐 
 
and 𝑐 ≥ 0 is a free parameter. 
 

                                                           
5 Symmetry under a 180° rotation means 𝑣(𝑡) + 𝑣(𝑇 − 𝑡) = 𝑉. 

6 See Bernegger, S. (1997) The Swiss Re Exposure Curves and the MBBEFD Distribution Class. ASTIN Bulletin, 27(1), 
pp. 99-111. 
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The chart below shows 𝐸𝑐(𝑥) for integer 𝑐, 0 ≤ 𝑐 ≤ 5. 𝐸𝑐(𝑥) for 𝑐 = 1, 2, 3, 4 are known as the 
Swiss Re Y𝒄 curves. 𝐸5(𝑥) is known as the Lloyd’s curve. 
 

 
 

2. LINEAR BUILD-UP OF VALUE 

 
When 𝑣 is linear, that is 𝑣(𝑡) = (𝑉 𝑇⁄ )𝑡, we have from (1): 
 

 𝑟 =
2𝑃

𝑉𝑇
 (10) 

 
The general formula (5) then becomes: 
 

𝐿 = ∫ {𝐸 (min {
𝑉1
𝑚(𝑡)

, 1}) − 𝐸 (min {
𝑉0
𝑚(𝑡)

, 1})} ⋅
2𝑃

𝑉𝑇
⋅
𝑉𝑡

𝑇
𝑑𝑡

𝑇

0

 

 
So: 
 

 
𝐿

𝑃
=

2

𝑇2
∫ 𝑡 {𝐸 (min {

𝑉1
𝑚(𝑡)

, 1}) − 𝐸 (min {
𝑉0
𝑚(𝑡)

, 1})} 𝑑𝑡
𝑇

0

 (11) 

 
Alternatively, using the explicit formulation in (4), we have: 
 

-0.2

0

0.2

0.4

0.6

0.8

1

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

𝑐 = 5 

𝑐 = 1 

𝑐 = 2 

𝑐 = 3 

𝑐 = 4 

𝑐 = 0 
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𝐿

𝑃
=

2

𝑇2
{
𝑇1
2 − 𝑇0

2

2
− ∫ 𝑡𝐸 (

𝑉0
𝑚(𝑡)

) 𝑑𝑡
𝑇

𝑇0

+∫ 𝑡𝐸 (
𝑉1
𝑚(𝑡)

)𝑑𝑡
𝑇

𝑇1

} (12) 

 
The PML build-up 𝑚 can take a variety of forms. It may increase in the same fashion as 𝑣, or it 
may be essentially constant.7 In the case of projects with testing, 𝑚 may experience a jump at 
the start of the testing period (see Section 7). In this case 𝑟 also changes, so the testing period 
must treated separately. Rapid changes in 𝑚(𝑡) usually indicate a change in the exposure 
(perils, property or coverage) and a possible change in 𝑟. 
 

3. SPECIAL CASES OF 𝒎(𝒕) 

 
In this section we continue to assume that 𝑣(𝑡) = (𝑉 𝑇⁄ )𝑡 is linear. It is usually difficult to 
specify the actual PML build-up 𝑚(𝑡). However, simple assumptions can often be made. We 
consider two cases: when 𝑚 is linear, and when 𝑚 is constant. 
 
CASE 1: 𝒎(𝒕) = (𝑴 𝑻⁄ )𝒕 is linear.8 Then (12) becomes: 
 

 
𝐿

𝑃
=

2

𝑇2
{
𝑇1
2 − 𝑇0

2

2
− ∫ 𝑡𝐸 (

𝑉0𝑇

𝑀𝑡
)𝑑𝑡

𝑇

𝑇0

+∫ 𝑡𝐸 (
𝑉1𝑇

𝑀𝑡
)𝑑𝑡

𝑇

𝑇1

} (13) 

 
The limits of integration 𝑇0 and 𝑇1 are easily determined using the linearity of 𝑚(𝑡). Since 
𝑉𝑖 = 𝑚(𝑇𝑖) = (𝑀 𝑇⁄ )𝑇𝑖, we have: 
 

 
𝑇0 = (𝑇 𝑀⁄ )𝑉0 

𝑇1 = (𝑇 𝑀⁄ )𝑉1 
(14) 

 
Substituting these where they appear in (13) we obtain: 
 

𝐿

𝑃
=

2

𝑇2
{
𝑇2(𝑉1

2 − 𝑉0
2)

2𝑀2
−∫ 𝑡𝐸 (

𝑉0𝑇

𝑀𝑡
)𝑑𝑡

𝑇

𝑇𝑉0 𝑀⁄

+∫ 𝑡𝐸 (
𝑉1𝑇

𝑀𝑡
)𝑑𝑡

𝑇

𝑇𝑉1 𝑀⁄
} 

 

=
𝑉1
2 − 𝑉0

2

𝑀2
−

2

𝑇2
∫ 𝑡𝐸 (

𝑉0𝑇

𝑀𝑡
)𝑑𝑡

𝑇

𝑇𝑉0 𝑀⁄

+
2

𝑇2
∫ 𝑡𝐸 (

𝑉1𝑇

𝑀𝑡
)𝑑𝑡

𝑇

𝑇𝑉1 𝑀⁄

 

 
Now make the change of variable 𝑢 = 𝑀𝑡 𝑉0𝑇⁄  and 𝑢 = 𝑀𝑡 𝑉1𝑇⁄  in the first and second integrals, 
respectively, to obtain: 
 

𝐿

𝑃
=
𝑉1
2 − 𝑉0

2

𝑀2
−
2𝑉0

2

𝑀2
∫ 𝑢𝐸 (

1

𝑢
) 𝑑𝑢

𝑀 𝑉0⁄

1

+
2𝑉1

2

𝑀2
∫ 𝑢𝐸 (

1

𝑢
) 𝑑𝑢

𝑀 𝑉1⁄

1

 

                                                           
7 A more complicated example is provided by a hydroelectric power plant. At the start of the project 𝑚(𝑡) increases 
slowly during site preparation and infrastructure works, reaches a peak mid-way during the period (corresponding 
to collapse of a cofferdam or diversion tunnel, resulting in a catastrophic flood), decreases after the main dam is 
completed and the diversion tunnels are closed, and increases again during the testing period. The risk exposures 
change significantly during the period; therefore, 𝑟 is not constant. An accurate layer price requires a number of 
separate calculations. As 𝑚 is not non-decreasing, (4) would require modification; however, (5) remains valid. 
 
8 This may be a reasonable assumption for the construction of buildings, dams, bridges, etc. 



8 
 

A Non-Proportional Premium Rating 
Method for Construction Risks 

DANIEL ABRAMSON 

 

=
𝑉1
2

𝑀2 {1 + 2∫ 𝑢𝐸 (
1

𝑢
) 𝑑𝑢

𝑀 𝑉1⁄

1

} −
𝑉0
2

𝑀2 {1 + 2∫ 𝑢𝐸 (
1

𝑢
) 𝑑𝑢

𝑀 𝑉0⁄

1

} 

 
Note that 𝑇 has disappeared. (𝑇 does not affect the layer price; we can always make 𝑇 = 1 by 
appropriate choice of units or the change of variable 𝑡′ = 𝑡 𝑇⁄ .) 
 
Define for 𝑥 ≥ 1: 
 

𝔾(𝑥) = ∫ 𝑢𝐸 (
1

𝑢
) 𝑑𝑢

𝑥

1

 

 
Then we may write: 
 

 
𝐿

𝑃
=
𝑉1
2

𝑀2 {1 + 2𝔾(
𝑀

𝑉1
)} −

𝑉0
2

𝑀2 {1 + 2𝔾(
𝑀

𝑉0
)} (15) 

 
Unfortunately 𝔾(𝑥) cannot be expressed in terms of elementary functions when 𝐸(𝑥) is given by 
(9). 
 

Example: Suppose 𝑣 and 𝑚 build up linearly, with 𝑀 = 80. Calculate 𝐿 𝑃⁄  for a 40 XS 10 
layer, using the Lloyd’s curve: 
 

𝐸(𝑥) = (2 11⁄ ) ln {1 + 323.4549(1 − 𝑒−1.4𝑥)} 
 
Solution: From (15) we have: 
 

𝐿

𝑃
=
25

64
{1 + 2∫ 𝑢𝐸 (

1

𝑢
) 𝑑𝑢

1.6

1

} −
1

64
{1 + 2∫ 𝑢𝐸 (

1

𝑢
)𝑑𝑢

8

1

} ≈ 0.1873 

 
Note that a naive calculation which assumes 𝑚(𝑡) = 80 (constant) gives 𝐿 𝑃⁄ = 𝐸(5 8⁄ ) −
𝐸(1 8⁄ ) ≈ 0.2320, which overestimates the correct amount by ~24%. 

 

Incidentally, 𝔾(𝑀 𝑉0⁄ ) = ∫ 𝑢𝐸(1 𝑢⁄ )𝑑𝑢
𝑀 𝑉0⁄

1
 does not converge as 𝑉0 → 0 since 𝑢𝐸(1 𝑢⁄ ) ≥

𝑢(1 𝑢⁄ ) = 1. However, the product 𝑉0
2𝔾(𝑀 𝑉0⁄ ) does converge as 𝑉0 → 0. By L’Hôpital’s rule: 

 

lim
𝑉0→0

𝑉0
2∫ 𝑢𝐸 (

1

𝑢
)𝑑𝑢 =

𝑀 𝑉0⁄

1

lim
𝑉0→0

𝑀
𝑉0
⋅ 𝐸 (

𝑉0
𝑀)(−

𝑀
𝑉0
2)

−
2
𝑉0
3

=
𝑀2

2
lim
𝑉0→0

𝐸 (
𝑉0
𝑀
) = 0 

 
CASE 2: 𝒎(𝒕) = 𝑴 is constant.9 Strictly speaking, this is unrealistic if 𝑣(𝑡) = (𝑉 𝑇⁄ )𝑡 is linear. 
Since 𝑣(0) = 0, we have 𝑚(𝑡) > 𝑣(𝑡) near 𝑡 = 0, which is not possible. This objection can be 
overcome by choosing: 
 

                                                           
9 This may be a reasonable assumption for the construction of “long linear” risks such as roads, railways, tunnels, 
pipelines, transmission and distribution lines, etc. 
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𝑚(𝑡) = {
(𝑉 𝑇⁄ )𝑡 0 ≤ 𝑡 < 𝑀𝑇 𝑉⁄

𝑀 𝑀𝑇 𝑉⁄ ≤ 𝑡 ≤ 𝑇
 

 
as illustrated in Figure 2 below. 
 

 
FIGURE 2 

 
In actuality, we can often ignore this complication. The assumption that 𝑚 is constant usually 
occurs in situations where 𝑚 builds up quickly to a constant value 𝑀 ≪ 𝑉. We can ignore the 
region near 𝑡 = 0 where 𝑣(𝑡) < 𝑀, since this region has little influence on the layer price (the 
premium density 𝑟𝑣(𝑡) is small). The layer price is dominated by the region where 𝑣(𝑡) > 𝑀. 
 
If 𝑚 is constant, 𝑇0 and 𝑇1 are not well defined, since 𝑚(𝑡) does not enter and exit the layer. We 
can proceed directly to write: 
 

𝐿 = ∫ {𝐸 (
𝑉1
𝑀
)− 𝐸 (

𝑉0
𝑀
)} 𝑟𝑣(𝑡)𝑑𝑡

𝑇

0

 

 

= {𝐸 (
𝑉1
𝑀
)− 𝐸 (

𝑉0
𝑀
)}∫ 𝑟𝑣(𝑡)𝑑𝑡

𝑇

0

 

 

= 𝑃 {𝐸 (
𝑉1
𝑀
)− 𝐸 (

𝑉0
𝑀
)} 

 
which yields the simple formula: 
 

 
𝐿

𝑃
= 𝐸 (

𝑉1
𝑀
)− 𝐸 (

𝑉0
𝑀
) (16) 

 
This is the usual formula for a static property risk. The behavior of 𝑣(𝑡) is irrelevant; what 
matters is that 𝑚(𝑡) is constant, so the factor 𝐸(𝑉1 𝑚(𝑡)⁄ ) − 𝐸(𝑉0 𝑚(𝑡)⁄ ) = 𝐸(𝑉1 𝑀⁄ ) − 𝐸(𝑉0 𝑀⁄ ) 
is time-independent.  

LAYER

𝑣 𝑡

𝑚 𝑡

𝑉

𝑀
𝑉1

𝑉0

𝑇
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4. S-SHAPED BUILD-UP OF VALUE (I) 

 
The build-up of value at a construction project typically has a sigmoidal (S-shaped) curve. Costs 
build up slowly at the start of the project, during mobilization and site preparation. Later on, 
costs accumulate at an almost constant rate with work crews on site and delivery of 
construction materials and machinery and equipment to be erected. As the project nears 
completion, the cost accumulation decelerates. 
 
Recall in Section 2 we used the linearity of 𝑣 to find 𝑟 = 2𝑃 𝑉𝑇⁄ . This actually remains valid if 
the S-curve is symmetrical under a 180° rotation, as shown in Figure 3. 
 

 
FIGURE 3 

 
To see this, note the area under the S-shaped curve is the same as under the straight line, so 

∫ 𝑣(𝑡)𝑑𝑡 = 𝑉𝑇 2⁄
𝑇

0
. In fact, this is true for any function 𝑣(𝑡) that is symmetrical under a 180° 

rotation. Symmetry under a 180° rotation means 𝑣(𝑡) + 𝑣(𝑇 − 𝑡) = 𝑉. Hence: 
 

2∫ 𝑣(𝑡)𝑑𝑡
𝑇

0

= ∫ 𝑣(𝑡)𝑑𝑡
𝑇

0

+∫ [𝑉 − 𝑣(𝑇 − 𝑡)]𝑑𝑡
𝑇

0

 

 

= ∫ 𝑣(𝑡)𝑑𝑡
𝑇

0

+ 𝑉𝑇 −∫ 𝑣(𝑇 − 𝑡)𝑑𝑡
𝑇

0

 

 
= 𝑉𝑇 

 

so that ∫ 𝑣(𝑡)𝑑𝑡 = 𝑉𝑇 2⁄
𝑇

0
. Therefore, when 𝑣(𝑡) is symmetrical under a 180° rotation: 

 

𝑟 = 𝑃 {∫ 𝑣(𝑡)𝑑𝑡
𝑇

0

}

−1

=
2𝑃

𝑉𝑇
 

 
as claimed. This proves equation (6). 
 
We also used linearity of 𝑣 to express the premium density: 
 

𝑟𝑣(𝑡) =  
2𝑃

𝑉𝑇
⋅
𝑉

𝑇
𝑡 =

2𝑃

𝑇2
𝑡 
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but this no longer holds when 𝑣 is not linear. Looking at Figure 4 below, we see that in the 
region 0 ≤ 𝑡 ≤ 𝑇 2⁄  (where the straight line is above the S-curve), the straight-line gives a 
higher premium density 𝑟𝑣(𝑡) than the S-shaped curve. Similarly, in the region 𝑇 2 ≤ 𝑡 ≤ 𝑇⁄ , the 
straight-line gives a lower premium density. 
 

 

FIGURE 4 

 
These effects do not cancel each other out in the calculation of the layer price, because of the 
“layer allocation factor” which appears in equations (5) and (6): 
 

𝜃(𝑡) = 𝐸 (min {
𝑉1
𝑚(𝑡)

, 1}) − 𝐸 (min {
𝑉0
𝑚(𝑡)

, 1}) 

 
The behavior of 𝜃(𝑡) as 𝑡 advances is examined in the Appendix. 𝜃(𝑡) can favor (i.e., result in a 
higher layer premium) either the S-shaped curve or the straight-line build-up, depending on the 
relative widths and positions of regions A, B and C. As the attachment point rises, region A 
(which contributes nothing) becomes larger, regions B and C shift further to the right, and 
region C gets smaller; all of which increase the premium for the S-shaped build-up. In most 
cases, the linear approximation results in a lower premium than an S-shaped function. 
 

5. S-SHAPED BUILD-UP OF VALUE (II) 

 
The S-shaped curve for build-up of value at some construction projects with final value V and 
period 𝑇 can be approximated by the functions: 
 

𝑢1(𝑡) =
𝑉

𝑇2
{3𝑡2 − (

2

𝑇
) 𝑡3} 

 

𝑢2(𝑡) =
𝑉

2
{sin𝜋 (

𝑡

𝑇
−
1

2
) + 1} 

LAYER

    Region A Region B Region C

T

𝑣 𝑡

𝑚 𝑡

𝑉1

𝑉

𝑀

𝑉0

𝑇0 𝑇1
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for 0 ≤ 𝑡 ≤ 𝑇. These functions are very similar on [0, 𝑇] as shown in Figure 5 below (with 
𝑉 = 𝑇 = 1). The polynomial 𝑢1 is something of a curiosity; besides possessing 180° symmetry 
on the interval [0, 𝑇] it also approximates 𝑢2 extremely well. The functions 𝑢1 and 𝑢2: 

(i) Are symmetric under a 180° rotation 

(ii) Satisfy 𝑢𝑖
′(0) = 𝑢𝑖

′(𝑇) = 0 

(iii) Have maximum slopes 𝑢1
′ (𝑇 2⁄ ) = 3𝑉 2𝑇⁄  and 𝑢2

′ (𝑇 2⁄ ) = 𝜋𝑉 2𝑇⁄ . 
 

 

FIGURE 5 

 
Since 𝑟 = 2𝑃 𝑉𝑇⁄  when 𝑣 is symmetrical under a 180° rotation, we have from (6): 
 

 
𝐿

𝑃
=

2

𝑉𝑇
∫ {𝐸 (min {

𝑉1
𝑚(𝑡)

, 1}) − 𝐸 (min {
𝑉0
𝑚(𝑡)

, 1})} 𝑢𝑖(𝑡)𝑑𝑡
𝑇

0

 (17) 

 
Alternatively, we can use the explicit form in (4) and write: 
 

 
𝐿

𝑃
=

2

𝑉𝑇
{∫ 𝑢𝑖(𝑡)𝑑𝑡 − ∫ 𝐸 (

𝑉0
𝑚(𝑡)

) 𝑢𝑖(𝑡)𝑑𝑡
𝑇

𝑇0

+∫ 𝐸 (
𝑉1
𝑚(𝑡)

) 𝑢𝑖(𝑡)𝑑𝑡
𝑇

𝑇1

𝑇1

𝑇0

} (18) 

 
(Note the factor of 𝑉−1 in front of the integrals cancels the 𝑉 in 𝑢𝑖(𝑡).) The limits of integration 
𝑇0 and 𝑇1 can be calculated by solving the equations: 
 

𝑚(𝑇0) = 𝑉0 

𝑚(𝑇1) = 𝑉1 
 
We consider again the special cases when 𝑚 is proportional to 𝑣 and when 𝑚 is constant. 
 
CASE 1: Assume 𝑚 is proportional to 𝑣, that is 𝑚(𝑡) = (𝑀 𝑉⁄ )𝑢𝑖(𝑡). Then equation (17) or (18) 
can be used to compute 𝐿. 
  

𝑢1 

𝑢2 
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Example: Suppose 𝑣 and 𝑚 are given by 𝑣(𝑡) = 100(3𝑡2 − 2𝑡3) and 𝑚(𝑡) = 80(3𝑡2 − 2𝑡3) 
for 0 ≤ 𝑡 ≤ 1. Calculate 𝐿 𝑃⁄  for a 40 XS 10 layer, using the Lloyd’s curve. 
 
Solution: We solve the equations 
 

3𝑇0
2 − 2𝑇0

3 = 1 8⁄  

3𝑇1
2 − 2𝑇1

3 = 5 8⁄  
 
numerically to obtain 𝑇0 ≈ 0.2211 and 𝑇1 ≈ 0.5841. Using (18) with 𝑇 = 1: 
 

𝐿

2𝑃
= (𝑡3 −

𝑡4

2
)|

𝑇0

𝑇1

−∫ 𝐸 (
1 8⁄

3𝑡2 − 2𝑡3
) (3𝑡2 − 2𝑡3)𝑑𝑡

1

𝑇0

+∫ 𝐸 (
5 8⁄

3𝑡2 − 2𝑡3
) (3𝑡2 − 2𝑡3)𝑑𝑡

1

𝑇1

 

 

= 0.1315 − ∫ 𝐸 (
1 8⁄

3𝑡2 − 2𝑡3
) (3𝑡2 − 2𝑡3)𝑑𝑡

1

0.2211

+∫ 𝐸 (
5 8⁄

3𝑡2 − 2𝑡3
) (3𝑡2 − 2𝑡3)𝑑𝑡

1

0.5841

 

 

Using the Lloyd’s curve 𝐸(𝑥) = (2 11⁄ ) ln {1 + 323.4549(1 − 𝑒−1.4𝑥)} we obtain: 
 

𝐿

𝑃
≈ 2(0.1315 − 0.3804 + 0.3475) = 0.1971 

 
The figure of 0.1873 obtained in the earlier example using a straight line build-up of value is 
too low by about 5%. 

 
CASE 2: Assume 𝑚(𝑡) = 𝑀 is constant. We note again that 𝑣(𝑡) < 𝑀 near 𝑡 = 0 is unrealistic. If 
desired, we can choose: 
 

𝑚(𝑡) = { 
𝑣(𝑡) 0 ≤ 𝑡 < 𝜏

𝑀 𝜏 ≤ 𝑡 ≤ 𝑇
 

 
where 𝑣(𝜏) = 𝑀. We ignore this complication by assuming 𝑀 ≪ 𝑉. 
 
From (16) we know that 𝑣(𝑡) does not matter, and: 
 

𝐿

𝑃
= 𝐸 (

𝑉1
𝑀
)− 𝐸 (

𝑉0
𝑀
) 

 
This can be checked directly. For example, for 𝑢1: 
 

𝐿

𝑃
=
1

𝑃
∫ {𝐸 (

𝑉1
𝑀
)− 𝐸 (

𝑉0
𝑀
)} 𝑟𝑢1(𝑡)𝑑𝑡

𝑇

0

 

 

=
1

𝑃
∫ {𝐸 (

𝑉1
𝑀
)− 𝐸 (

𝑉0
𝑀
)} ⋅

2𝑃

𝑉𝑇
⋅
𝑉

𝑇2
{3𝑡2 − (

2

𝑇
) 𝑡3} 𝑑𝑡

𝑇

0

 

 

=
2

𝑇3
{𝐸 (

𝑉1
𝑀
)− 𝐸 (

𝑉0
𝑀
)}∫ (3𝑡2 −

2𝑡3

𝑇
)𝑑𝑡

𝑇

0

 

 



14 
 

A Non-Proportional Premium Rating 
Method for Construction Risks 

DANIEL ABRAMSON 

= 𝐸 (
𝑉1
𝑀
)− 𝐸 (

𝑉0
𝑀
) 

 
 

6. OTHER S-SHAPED CURVES 

 
We have seen that 𝑢1 and 𝑢2 have S-shaped curves on [0, 𝑇] which are symmetric under a 180° 
rotation. Unfortunately, these functions do not admit easy modification of their shape to model 
different rates of build-up of value. 
 
The build-up of value 𝑣(𝑡) for heavy industrial projects like power plants and oil refineries 
usually has a more pronounced S-shape than for buildings, dams or bridges. At the beginning of 
such projects, 𝑣(𝑡) increases slowly while mobilization and site preparation take place, then 
increases more rapidly as machinery and equipment are delivered and erected, and flattens out 
again while numerous functional checks and tests are carried out. A collection of S-shaped 
curves with different degrees of “steepness” would enable us to model the build-up of value for 
a wide variety of construction projects. 
 
A family of symmetric S-shaped curves 𝐷𝑘(𝑡): [0, 𝑇] → [0, 𝑉] can be generated for 𝑘 > 0 by 
 

 𝐷𝑘(𝑡) =
𝑉

2
{
tanh [𝑘 (

𝑡
𝑇
−
1
2
)]

tanh (
𝑘
2)

 + 1} (19) 

 
These functions have a maximum slope 
 

𝐷𝑘
′ (𝑇 2⁄ ) =

𝑘𝑉

2𝑇 tanh(𝑘 2⁄ )
 

 
We define 
 

𝐷0(𝑡) ≡ lim
𝑘→0

𝐷𝑘(𝑡) = (𝑉 𝑇⁄ )𝑡 

 
This can be verified by replacing tanh 𝑥 by its Taylor series tanh 𝑥 = 𝑥 − 𝑥3 3⁄ +⋯ which 
converges for |𝑥| < 𝜋 2⁄ : 
 

lim
𝑘→0

𝑉

2
{
tanh [𝑘 (

𝑡
𝑇 −

1
2)]

tanh (
𝑘
2)

 + 1} = lim
𝑘→0

𝑉

2
{
𝑘 (

𝑡
𝑇 −

1
2)+ terms of order 𝑘

3

𝑘
2+ terms of order 𝑘

3
 + 1} =

𝑉

𝑇
𝑡 

 
Several of these curves are illustrated in Figure 6 below (with 𝑉 = 𝑇 = 1), together with 

𝑢1(𝑡) = 3𝑡2 − 2𝑡3. 
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FIGURE 6 

 
Equation (6) naturally applies with the functions 𝐷𝑘. Thus, when the build-up of value 𝑣(𝑡) is 
approximated by 𝐷𝑘(𝑡): 
 

 
𝐿

𝑃
=

2

𝑉𝑇
∫ {𝐸 (min {

𝑉1
𝑚(𝑡)

, 1}) − 𝐸 (min {
𝑉0
𝑚(𝑡)

, 1})}𝐷𝑘(𝑡)𝑑𝑡
𝑇

0

 (20) 

 
The table below compares the premium allocation for two layers and three different 𝑣(𝑡): a 
straight line, 𝑢1 and 𝐷7. We choose 𝑀 = 𝑉 = 100 and 𝑚(𝑡) = 𝑣(𝑡).10 Note that the linear 
approximation underestimates the layer price when the build-up has an S-shape, and the error 
increases as the attachment point increases. 
 

Layer 

Layer allocation 𝐿 𝑃⁄  using 𝑣(𝑡) = 

𝑉𝑡

𝑇
 

𝑉

𝑇2
(3𝑡2 −

2𝑡3

𝑇
) 

𝑉

2
{
tanh[7(𝑡 𝑇⁄ − 1 2⁄ )]

tanh(7 2⁄ )
+ 1} 

50 XS 10 0.219 0.229 0.244 

50 XS 50 0.317 0.417 0.562 

 

                                                           
10 The Lloyd’s curve is used for 𝐸(𝑥). 

3𝑡2 − 2𝑡3 

𝑘 = 0 

𝑘 = 2 

𝑘 = 4 

𝑘 = 6 

𝑘 = 8 

𝑘 = 12 
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7. EXPOSURES AND PERILS 

 
Testing periods. Construction risks involving the erection of machinery and equipment usually 
have a testing period that commences after the construction works are complete. The build-up 
curve, therefore, reaches its maximum value prior to the end of the period and remains 
constant, as shown in Figure 7 below. The testing period may be responsible for a significant 
proportion (even a majority) of the policy premium; therefore, it plays an important role in 
layer pricing. 
 
The construction and testing periods must be priced separately, because 𝑟 is not the same 
during these two phases. Hence, separate premium calculations must be carried out for the 
construction period (with its build-up curve 𝑣con(𝑡) and associated premium 𝑃con) and the 
testing period (with 𝑣test(𝑡) = 𝑉 and associated premium 𝑃test). 
 
Note that the PML curve 𝑚 usually jumps to a higher value at the start of the testing period, as 
typically 𝑀test > 𝑀con due to the presence of more severe loss exposures during testing. 
 

 
FIGURE 7 

 
Natural catastrophe exposures. Natural catastrophe exposures must be treated separately if 
they contribute significantly to the premium, because they have their own exposure rating 
curves, PML curves and 𝑟 values. 
 
Some catastrophe perils (e.g., earthquake) have a PML curve that can be modeled as a fixed 
proportion of the value: 𝑚cat(𝑡) = 𝛼𝑣(𝑡). Other catastrophe perils, such as hurricane, may be 
seasonal and modeled with a PML 𝑚cat(𝑡) = 𝛼𝑣(𝑡) during hurricane seasons and 𝑚cat(𝑡) = 0 
between seasons, as shown in Figure 8 below. 
 

TestingConstruction Period
Period

𝑣 𝑡

𝑚 𝑡

𝑇

𝑉

𝑀test

𝑀con
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FIGURE 8 

 
Note that here 𝑟 is not constant: 𝑟(𝑡) = �̃�𝜒(𝑡) for some constant �̃�, where 
 

𝜒(𝑡) = { 
1 𝑡 ∈ hurricane season

0 𝑡 ∉ hurricane season
 

 
Hence: 
 

𝑃 = ∫ 𝑟(𝑡)𝑣(𝑡)𝑑𝑡
𝑇

0

= ∫ �̃�𝜒(𝑡)𝑣(𝑡)𝑑𝑡
𝑇

0

 

 
and therefore: 
 

 �̃� = 𝑃 {∫ 𝜒(𝑡)𝑣(𝑡)𝑑𝑡
𝑇

0

}

−1

 (21) 

 
Unfortunately, 𝜒(𝑡)𝑣(𝑡) is not symmetrical under a 180° rotation, so we cannot evaluate this 
expression as we did in the symmetrical case where 𝑟 = 2𝑃 𝑉𝑇⁄ . Instead �̃� must be calculated 
using (21). From (5) we have: 
 

𝐿 = ∫ {𝐸 (min {
𝑉1

𝑚cat(𝑡)
, 1}) − 𝐸 (min {

𝑉0
𝑚cat(𝑡)

, 1})} �̃�𝜒(𝑡)𝑣(𝑡)𝑑𝑡
𝑇

0

 

 
Note that outside the hurricane season 𝑚cat(𝑡) = 0, so the term in curly brackets is 1 − 1 = 0. 
Hence, the integral is over hurricane seasons only, so the factor 𝜒(𝑡) is superfluous. We can 
therefore simplify this formula to: 
 

 𝐿 = ∫ {𝐸 (min {
𝑉1

𝑚cat(𝑡)
, 1}) − 𝐸 (min {

𝑉0
𝑚cat(𝑡)

, 1})} �̃�𝑣(𝑡)𝑑𝑡
𝑇

0

 (22) 

𝑉1

𝑉

𝑀

𝑉0

𝑇

𝑣 𝑡

𝑚 𝑡
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Note that the PML function 𝑚cat(𝑡) has the form 𝑚cat(𝑡) = 𝜒(𝑡)𝑚(𝑡) for some function 𝑚(𝑡). 
 
Independent perils and exposures. Suppose the overall loss exposure is comprised of multiple, 
independent11 exposures ℰ𝑖 with associated 𝑚𝑖(𝑡), 𝐸𝑖(𝑥), 𝑟𝑖 and 𝑃𝑖. (The exposure rating curve 
𝐸𝑖(𝑥) is parameterized by some 𝑐𝑖). Then the layer price is calculated by adding the layer prices 
for each individual exposure: 
 

𝐿 =∑𝐿𝑖
𝑖

=∑∫ {𝐸𝑖 (min {
𝑉1

𝑚𝑖(𝑡)
, 1}) − 𝐸𝑖 (min {

𝑉0
𝑚𝑖(𝑡)

, 1})} 𝑟𝑖𝑣(𝑡)𝑑𝑡
𝑇

0𝑖

 

 
If 𝑣(𝑡) is symmetrical under a 180° rotation: 
 

 𝐿 =
2

𝑉𝑇
∑𝑃𝑖∫ {𝐸𝑖 (min {

𝑉1
𝑚𝑖(𝑡)

, 1}) − 𝐸𝑖 (min {
𝑉0

𝑚𝑖(𝑡)
, 1})} 𝑣(𝑡)𝑑𝑡

𝑇

0𝑖

 (23) 

 

8. LOSS LIMITS 

 
An insurance policy may have loss limits (particularly in the case of natural catastrophe perils) 
that limit the maximum payout for an event. Suppose there is a loss limit 𝑄 < 𝑀. (If 𝑄 ≥ 𝑀, the 
limit serves no purpose.) We may assume 𝑉1 ≤ 𝑄. (If 𝑉1 > 𝑄, we can simply redefine 𝑉1 = 𝑄.) 
 
The layer premium 𝐿 is not affected by the loss limit, since the layer lies below the limit 

(𝑉1 ≤ 𝑄). However, the premium �̃� with the loss limit is not the same as the premium 𝑃 without 

the loss limit (it is smaller). The underwriter can supply the actual policy premium �̃�, but 

probably not 𝑃. So the general formula (5) needs to be altered so that �̃� appears instead of 𝑃. 
 
Equation (6) for a primary layer gives: 
 

 �̃� = ∫ 𝐸 (min {
𝑄

𝑚(𝑡)
, 1}) 𝑟𝑣(𝑡)𝑑𝑡

𝑇

0

 (24) 

 
so: 
 

𝑟 = �̃� {∫ 𝐸 (min {
𝑄

𝑚(𝑡)
, 1}) 𝑣(𝑡)𝑑𝑡

𝑇

0

}

−1

 

 
Therefore, by (5): 
 

                                                           
11 “Independent” means that a loss cannot arise from more than one peril or exposure. The various phases of the 
project (contract works, testing, maintenance) are independent because they do not overlap. Similarly, natural 
catastrophe perils (earthquake, windstorm, flood) are independent of one another and independent of any other peril 
or exposure. 
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 𝐿 =

�̃� ∫ {𝐸 (min {
𝑉1
𝑚(𝑡)

, 1}) − 𝐸 (min {
𝑉0
𝑚(𝑡)

, 1})} 𝑣(𝑡)𝑑𝑡
𝑇

0

∫ 𝐸 (min {
𝑄

𝑚(𝑡)
, 1}) 𝑣(𝑡)𝑑𝑡

𝑇

0

 (25) 

 

9. DELAY IN START-UP 

 
Delay in Start-Up (DSU) can be treated similarly to property damage (PD) coverage. 
 
As time advances during the project period, DSU claims are generally more likely to occur and 
be more severe. This is because of: 

 Increasing value on site 

 Increasing scope and complexity of the project works 

 Emergence of a well-defined critical path in the schedule with interdependences and 
“bottlenecks” 

 Erosion or exhaustion of any buffer/margin built into the original schedule, due to 
inevitable, routine delays 

 Decreasing time remaining during which to make up time and reduce a delay 
 
This implies the premium density for DSU should increase with time. DSU coverage has its 

own sum insured �̂�, but no “build-up of value” analogous to 𝑣(𝑡). (A hat −̂ will denote quantities 
applying to DSU.) The full DSU sum insured is theoretically exposed at any time. However, we do 

not choose 𝑣(𝑡) = �̂� (constant) for 0 ≤ 𝑡 ≤ 𝑇, since the resulting premium density �̂��̂�(𝑡) would 
overweight premium in the early part in the period. 
 
We make the simple (but not unreasonable assumption) that the premium density increases in 
proportion to the project value: �̂�𝑣(𝑡) ∝ 𝑣(𝑡). This requires: 
 

 𝑣(𝑡) =
�̂�

𝑉
⋅ 𝑣(𝑡) (26) 

 
With this choice, note that: 
 

 �̂�𝑣(𝑡) =
�̂�𝑣(𝑡)

∫ 𝑣(𝑡)
𝑇

0
𝑑𝑡

=
�̂�𝑣(𝑡)

∫ 𝑣(𝑡)
𝑇

0
𝑑𝑡

=
�̂�𝑟𝑣(𝑡)

∫ 𝑟𝑣(𝑡)
𝑇

0
𝑑𝑡

=
�̂�

𝑃
⋅ 𝑟𝑣(𝑡) (27) 

 
which can be written symmetrically: 
 

�̂�𝑣(𝑡)

�̂�
=
𝑟𝑣(𝑡)

𝑃
 

 

The layer price �̂� for standalone DSU coverage follows immediately from (5), using (26) and 
(27): 
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�̂� = ∫ {�̂� (min {
𝑉1
�̂�(𝑡)

, 1}) − �̂� (min {
𝑉0
�̂�(𝑡)

, 1})} �̂�𝑣(𝑡)𝑑𝑡
𝑇

0

 

 

=
�̂�𝑟

𝑃
∫ {�̂� (min {

𝑉1
�̂�(𝑡)

, 1}) − �̂� (min {
𝑉0
�̂�(𝑡)

, 1})} 𝑣(𝑡)𝑑𝑡
𝑇

0

 

 
If 𝑣(𝑡) is symmetrical under a 180° rotation, then 𝑟 = 2𝑃 𝑉𝑇⁄  so: 
 

 �̂� =
2�̂�

𝑉𝑇
∫ {�̂� (min {

𝑉1
�̂�(𝑡)

, 1}) − �̂� (min {
𝑉0
�̂�(𝑡)

, 1})} 𝑣(𝑡)𝑑𝑡
𝑇

0

 (28) 

 

We write �̂� since the exposure rating curve for DSU is different than for PD. (Generally �̂� < 𝑐 
since DSU has a higher proportion of large losses compared to PD.) 
 
An accurate PML12 build-up curve is even more challenging to specify for DSU than for property 
damage, because DSU PML scenarios are difficult to determine and model. In the discussion 
which follows we leave �̂�(𝑡) arbitrary. However, we expect �̂�(𝑡) to be increasing, since the 
severity of DSU claims increases with time. One option is to choose �̂� linear: 
 

�̂�(𝑡) =
�̂�

𝑇
𝑡 

 

where �̂� is the maximum PML (often, but not always, equal to �̂�). Another option is to choose �̂� 
proportional to 𝑚 or 𝑣:13 
 

�̂�(𝑡) =
�̂�

𝑀
⋅ 𝑚(𝑡)     or     �̂�(𝑡) =

�̂�

𝑉
⋅ 𝑣(𝑡) =

�̂�

�̂�
⋅ 𝑣(𝑡) 

 
Any of these assumptions may be used in (28).14 
 

10. COMBINED PD AND DSU COVERAGE 

 
As explained at the end of Section 7, when the overall loss exposure is comprised of 
independent exposures ℰ𝑖, the layer premium is calculated by adding the layer premiums for 
each individual exposure: 
 

𝐿 =∑𝐿𝑖
𝑖

 

 
The DSU layer premium in (28), however, cannot be added to the PD layer premium to arrive 
at the premium for combined PD and DSU coverage. This is because a DSU claim necessarily 
occurs together with the PD claim which triggered the delay (they are dependent events). Both 
claims contribute to erosion of the attachment point and the layer. 

                                                           
12 In the case of Delay in Start-Up, the PML is sometimes called the Maximum Probable Delay (MPD). 

13 These produce the same function �̂� if 𝑚 ∝ 𝑣. 

14 If 𝑚(𝑡) is constant (e.g., for roads, railways, tunnels, etc.) then �̂�(𝑡) = (�̂� 𝑀⁄ )𝑚(𝑡) would not be appropriate, 
because �̂�(𝑡) should still be increasing. 
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Therefore, when pricing non-proportional insurance with PD and DSU coverage, we must 
consider that the layer is exposed to PD and DSU losses combined, not separately. 
Unfortunately, no simple combination of the layer prices calculated in (5) and (28) can provide 
the correct price for combined PD and DSU coverage, since the time-evolution of the values and 
PMLs must be considered. 
 
We approach the problem by adding the PD and DSU exposures to create a combined exposure 

with Probable Maximum Loss 𝑚+(𝑡) = 𝑚(𝑡) + �̂�(𝑡). We also write 𝑀+ = 𝑀 + �̂�. 
 
The combined exposure has a loss distribution described by an exposure rating curve 

𝐸+(𝑥) = 𝐸𝑐+(𝑥), which lies in-between the curves 𝐸(𝑥) = 𝐸𝑐(𝑥) and �̂�(𝑥) = 𝐸𝑐̂(𝑥). A simple way 

to select 𝑐+ is to create a weighted average of 𝑐 and �̂�:15 
 

𝑐+ = 𝑐 (
𝑀

𝑀 + �̂�
) + �̂� (

�̂�

𝑀 + �̂�
) =

𝑐𝑀 + �̂��̂�

𝑀+
 

 
During the time interval [𝑡, 𝑡 + 𝑑𝑡] the layer attracts a portion of the PD premium 𝑟𝑣(𝑡)𝑑𝑡 and 
the DSU premium �̂��̂�(𝑡)𝑑𝑡. Hence: 
 

 𝐿+ = ∫{𝐸+ (min {
𝑉1

𝑚+(𝑡)
, 1}) − 𝐸+ (min {

𝑉0
𝑚+(𝑡)

, 1})} (𝑟𝑣(𝑡) + �̂��̂�(𝑡))𝑑𝑡

𝑇

0

 (29) 

 
Inserting (27) into (29) we obtain: 
 

 𝐿+ =
𝑃+𝑟

𝑃
∫ {𝐸+ (min {

𝑉1
𝑚+(𝑡)

, 1}) − 𝐸+ (min {
𝑉0

𝑚+(𝑡)
, 1})} 𝑣(𝑡)𝑑𝑡

𝑇

0

 (30) 

 

where 𝑃+ ≡ 𝑃 + �̂�. Inserting (1) for 𝑟 gives an equivalent, more symmetrical formula:16 
 

 𝐿+ =
𝑃+

∫ 𝑣(𝑡)𝑑𝑡
𝑇

0

∫ {𝐸+ (min {
𝑉1

𝑚+(𝑡)
, 1}) − 𝐸+ (min {

𝑉0
𝑚+(𝑡)

, 1})} 𝑣(𝑡)𝑑𝑡

𝑇

0

 (31) 

 

                                                           
15 Theoretically we could define 𝑐+ = 𝑐+(𝑡) at each time 𝑡: 
 

𝑐+(𝑡) = 𝑐 (
𝑚(𝑡)

𝑚(𝑡) + �̂�(𝑡)
) + �̂� (

�̂�(𝑡)

𝑚(𝑡) + �̂�(𝑡)
) =

𝑐𝑚(𝑡) + �̂��̂�(𝑡)

𝑚+(𝑡)
 

 
16 Replacing 𝑣(𝑡) with any multiple 𝛼𝑣(𝑡) leaves (30) unchanged, because the constants cancel in the two integrals. 

Therefore, we can replace 𝑣(𝑡) with (1 + �̂�/𝑉)𝑣(𝑡) = 𝑣(𝑡) + �̂�(𝑡) ≡ 𝑣+(𝑡) to obtain the perfectly symmetrical 
formula: 
 

𝐿+ =
𝑃+

∫ 𝑣+(𝑡)𝑑𝑡
𝑇

0

∫ {𝐸+ (min {
𝑉1

𝑚+(𝑡)
, 1}) − 𝐸+ (min {

𝑉0
𝑚+(𝑡)

, 1})} 𝑣+(𝑡)𝑑𝑡

𝑇

0
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If 𝑣(𝑡) is symmetrical under a 180° rotation, then (30) or (31) yields: 
 

 𝐿+ =
2𝑃+
𝑉𝑇

∫ {𝐸+ (min {
𝑉1

𝑚+(𝑡)
, 1}) − 𝐸+ (min {

𝑉0
𝑚+(𝑡)

, 1})} 𝑣(𝑡)𝑑𝑡

𝑇

0

 (32) 

 
Note that (32) reduces to (5) in the case of standalone PD coverage (𝑃+ = 𝑃, 𝑚+ = 𝑚, 𝐸+ = 𝐸) 

and to (28) in the case of standalone DSU coverage (𝑃+ = �̂�, 𝑚+ = �̂�, 𝐸+ = �̂�). 
 
Multiple independent exposures. Suppose ℰ𝑖 are independent exposures with associated 𝑚𝑖(𝑡), 

𝐸𝑖(𝑥), 𝑟𝑖 and 𝑃𝑖 (for PD) and �̂�𝑖(𝑡), �̂�𝑖(𝑥) and �̂�𝑖 (for DSU). The combined PD+DSU layer 
premium is calculated by adding the layer premiums for each PD+DSU exposure using (30):17 
 

𝐿+ =∑𝐿𝑖+
𝑖

=∑
𝑃𝑖+𝑟𝑖
𝑃𝑖

∫{𝐸𝑖+ (min {
𝑉1

𝑚𝑖+(𝑡)
, 1}) − 𝐸𝑖+ (min {

𝑉0
𝑚𝑖+(𝑡)

, 1})} 𝑣(𝑡) 𝑑𝑡

𝑇

0𝑖

 

 
If 𝑣(𝑡) is symmetrical under a 180° rotation: 
 

𝐿+ =
2

𝑉𝑇
∑𝑃𝑖+∫ {𝐸𝑖+ (min {

𝑉1
𝑚𝑖+(𝑡)

, 1}) − 𝐸𝑖+ (min {
𝑉0

𝑚𝑖+(𝑡)
, 1})} 𝑣(𝑡) 𝑑𝑡

𝑇

0𝑖

 

 
Loss Limits with combined PD and DSU coverage. Suppose an exposure ℰ𝑖 has a loss limit 𝑄 
that applies to the combined PD+DSU coverage. As noted in Section 8, we may assume without 
loss of generality that 𝑉1 ≤ 𝑄 < 𝑀+. 
 
The layer premium 𝐿𝑖+ is not affected by the loss limit, since the layer lies below the limit 

(𝑉1 ≤ 𝑄). But we need to rewrite (30) so that the actual premium �̃�𝑖+ = �̃�𝑖 + �̃̂�𝑖 (with the loss 

limit)18 appears instead of 𝑃𝑖+ = 𝑃𝑖 + �̂�𝑖. Repeating the method of Section 8, we use (30) to 

obtain the policy premium �̃�𝑖+ for exposure ℰ𝑖 with loss limit 𝑄 by choosing a primary layer 
defined by 𝑉0 = 0 and 𝑉1 = 𝑄: 
 

�̃�+𝑖 =
𝑃𝑖+𝑟𝑖

𝑃𝑖
∫{𝐸𝑖+ (min {

𝑄

𝑚𝑖+(𝑡)
, 1})} 𝑣(𝑡)𝑑𝑡

𝑇

0

 

 
Therefore: 
 

𝑃𝑖+𝑟𝑖

𝑃𝑖
= �̃�𝑖+ {∫{𝐸𝑖+ (min {

𝑄

𝑚𝑖+(𝑡)
, 1})} 𝑣(𝑡)𝑑𝑡

𝑇

0

}

−1

 

 
Inserting this back into (30), we obtain: 

                                                           
17 The underwriter should be able to supply 𝑃𝑖, but perhaps not �̂�𝑖 (which is needed to specify 𝑃𝑖+ = 𝑃𝑖 + �̂�𝑖). It is not 

uncommon for DSU to be priced as a multiple of the PD price or in some other coarse fashion. If �̂�𝑖 is not provided, we 

can make the simple assumption that �̂�𝑖 = (𝑃𝑖 𝑃⁄ )�̂�. The policy DSU premium �̂� should be known. 

18 As above, if �̃̂�𝑖 is not provided, we can assume �̃̂�𝑖 = (�̃�𝑖 �̃�⁄ )�̃̂�. The policy DSU premium �̃̂� should be known. 
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 𝐿𝑖+ =

�̃�𝑖+∫ {𝐸𝑖+ (min {
𝑉1

𝑚𝑖+(𝑡)
, 1}) − 𝐸𝑖+ (min {

𝑉0
𝑚𝑖+(𝑡)

, 1})} 𝑣(𝑡)𝑑𝑡
𝑇

0

∫ {𝐸𝑖+ (min {
𝑄

𝑚𝑖+(𝑡)
, 1})} 𝑣(𝑡)𝑑𝑡

𝑇

0

 (33) 

 

APPENDIX: THE “ALLOCATION FACTOR” 𝜽(𝒕) 

 
In Section 4 we began a discussion of the “layer allocation factor”: 
 

𝜃(𝑡) = 𝐸 (min {
𝑉1
𝑚(𝑡)

, 1}) − 𝐸 (min {
𝑉0
𝑚(𝑡)

, 1}) 

 

= {

0 𝑚(𝑡) < 𝑉0 (Region A)

1 − 𝐸(𝑉0 𝑚(𝑡)⁄ ) 𝑉0 ≤ 𝑚(𝑡) < 𝑉1 (Region B)

𝐸(𝑉1 𝑚(𝑡)⁄ ) − 𝐸(𝑉0 𝑚(𝑡)⁄ ) 𝑉1 ≤ 𝑚(𝑡) (Region C)

 

 
Now we examine 𝜃(𝑡) more carefully as 𝑡 advances. For the sake of simplicity, we assume 𝑇 = 1, 
and that 𝑚(𝑡) = 𝑀𝑡 is linear. 
 
Region A. In region A, 𝜃(𝑡) = 0 so there is no contribution. 
 
Region B. In region B, assuming 𝑉0 > 0, 𝜃(𝑡) increases from 0 to 1 − 𝐸(𝑉0 𝑉1⁄ ) as 𝑀𝑡 increases 
from 𝑉0 to 𝑉1. Graphs of 𝜃(𝑡) for 𝑉0 𝑀⁄ = 0.25 and 𝑉1 𝑀⁄ = 0.5 are shown below for various 
values of 𝑐. 
 

                 
 
 
If 𝑉0 = 0 (a pure primary layer) then 𝜃(𝑡) = 1. However, for 𝑡 > 0, 
 

lim
𝑉0↓0

𝜃(𝑡) = 1 

 
Therefore, 𝜃(𝑡) — viewed for fixed 𝑡 as a function of 𝑉0 — is right-continuous at 𝑉0 = 0 for all 
0 < 𝑡 ≤ 1; it fails to be right-continuous only when 𝑡 = 0. This anomaly can therefore be 
ignored. The following graph shows 𝜃(𝑡) for 𝑉0 𝑀⁄ = 0.01, 𝑉1 𝑀⁄ = 0.5 and 𝑐 = 1. 
 

𝑐 = 1 𝑐 = 3 

 

𝑐 = 5 
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Region C. As 𝑡 increases, both 𝐸(𝑉1 𝑀𝑡⁄ ) and 𝐸(𝑉0 𝑀𝑡⁄ ) are decreasing, so 𝜃(𝑡) is the difference 
between two decreasing numbers, as illustrated below (with 𝑉1 = 2𝑉0). 
 

 
 

 
  

𝒎 𝒕+ ∆𝒕
−  

  
𝒎 𝒕+∆𝒕

 
  
𝒎 𝒕

−  
  
𝒎 𝒕

  
𝒎 𝒕+∆𝒕

  
𝒎 𝒕

  
𝒎 𝒕+∆𝒕

  
𝒎 𝒕
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The behavior of 𝜃(𝑡) is not obvious, even for simple 𝑚(𝑡) such as a straight line, and turns out to 
be surprisingly complex. 𝜃(𝑡) is rather sensitive to the values of 𝑉0 𝑀⁄  and 𝑉1 𝑀⁄  as well as the 
parameter 𝑐 (remember that 𝐸(𝑥) = 𝐸𝑐(𝑥)). 
 

𝜃(𝑡) turns out to be decreasing for 0 ≤ 𝑐 < (√753 − 3) 6 = 4.073⁄ … and increasing for 

𝑐 > 4.073...19 Graphs of 𝜃(𝑡) for 𝑉0 𝑀⁄ = 0.25 and 𝑉1 𝑀⁄ = 0.5 are shown below for various 
values of 𝑐. 
 

                 
 
 
Note there is nothing anomalous about the case 𝑉0 = 0 in region C: if 𝑉0 = 0, 𝜃(𝑡) decreases 
steadily from 1 to 𝐸(𝑉1 𝑀⁄ ) as 𝑀𝑡 increases from 𝑉1 to 𝑀. 
 
Examining the behavior of 𝜃(𝑡) in various situations, we conclude that 𝜃(𝑡) may be increasing 
or decreasing in region C, but in most cases does not vary too greatly. 

                                                           
19 This occurs because 𝛽(𝑐) = 𝑒3.1−0.15(1+𝑐)𝑐 = 1 in equation (8) when 𝑐 = (√753 − 3) 6⁄ . 

𝑐 = 1 

 

𝑐 = 3 

 

𝑐 = 5 

 


