SCOR The Art & Science of Risk

Steel Industry: new technologies and associated risks

Didier Schütz

Risk Control Practice Leader

SCOR P&C

IMIA Webinar 2022

April 12, 2022 Paris - remote

Risk Control Practice & Services & Services

Content

Steel Industry: new technologies and associated risks

The current challenges

Iron ore = Iron oxyde Fe0 + Fe_20_3

DLS © Didier Schütz 5

Basic Chemistry

Basic Chemistry

P&C

Iron ore = Iron oxyde Fe0 + Fe_20_3 1) Iron Making 2) Steel Making = Mineral "Iron" 90-95% Iron (#4-5% Carbon) Carbon Steel (Iron + Carbon) (up to 2%) = Alloy = Alloy Iron DLS © Didier Schütz 6

Steel Making

Molten iron is refined into steel by reducing the carbon content and adding oxygen, lime, scrap metal and alloys.

Basic Oxygen Furnace / Steelmaking (BOF/BOS)

Electric Arc Furnaces (EAF)

Steel = Iron + Carbon

= Alloy

(up to 2%)

2. The current challenges

2. The current challenges

- Steel industry: reportedly accounting for an 7-8% of global CO_2 emissions (BF).
- Need to achieve 55% reduction of CO_2 emissions by 2030 (vs. 1990 levels). 1.
- Need to adopt a new business strategy that aligns profit goals with a 2. company's environmental policies.
- This alignment should be efficient enough to sustain and grow a business while 3. preserving the environment.

Moving to « Green Steel »

DLS © Didier Schütz 12

Z

3. The strategies

- Around 30% of the world's steel is reportedly made from recycled steel.
- 1. Steel recycling is mainly done in arc furnaces, driven by electricity.

2. Each ton of steel produced using this method produces about 0.4 tons of CO_2 – mostly due to emissions produced by burning fossil fuels for electricity generation.

Recycled Steel

Creative common

Energy recovery

Example of steel arc furnace energy recovery and storage system:

- Goal: 55% reduction of CO2 emissions by 2030 (vs. 1990 levels).
- 1. New emerging path: making "green steel", made using hydrogen rather than coal.
- 2. Using hydrogen for the Blast Furnace (BF):
 - a) The BF needs more externally added heat to keep the temperature high.
 - b) Solid coal in the main body of the furnace cannot be replaced with hydrogen.
 - c) Biomass alternative blended with coal being developed:
 - i. Sustainable sourcing issue
 - ii. Fossil-fuel derived emissions to be captured and stored

Source: Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

Breakthrough Technologies

- Direct reduced iron (DRI) or (Natural Gas-NG)-based direct reduction (DR):
- 1. Less than 5% of production
- 2. Two dominant gas-based process: MIDREX and HyL III
- 3. Use of massive amount of natural gas enriched with hydrogen
- 4. The reaction takes place in a reactor
- 5. The result is almost pure iron to be used in EAF for making steel
- 6. Overall emissions are lower than BF (more electricity. No coal!)

Breakthrough Technologies

Direct reduced iron (DRI) or (Natural Gas-NG)-based direct reduction (DR): MIDREX process

Breakthrough Technologies

Direct reduced iron (DRI) or (Natural Gas-NG)-based direct reduction (DR): HYL process

Breakthrough Technologies

Hydrogen-based direct reduction (H-DRI):

Breakthrough Technologies

- 1. Electrometallurgy = electrochemical process
- 2. Iron electrolysis is estimated to use 15-30% less electricity per ton of steel produced, relative to the hydrogen-based DRI route
- 3. Use of an inert anode is critical

High-temperature iron electrolysis:

- 4. Difficulties in finding a suitable non-consumable anode material capable of weathering the challenging conditions of the process.
- 5. Could come to the market by 2035

- Main issues:
 - 1. Supply chain
 - 2. Hazmat

- 3. Moisture content
- 4. Steel quality

Electric Power Co-Generation

Becoming a Power Plant Operator in addition to steel maker:

Direct reduced iron (DRI) or (Natural Gas-NG)-based direct reduction (DR)

HYL process:

Reforming of natural gas

High Temperature & Pressurized Reduction Process

Further methane reforming in-situ

Direct reduced iron (DRI) or (Natural Gas-NG)-based direct reduction (DR)

Reformer:

- Steam-methane reforming (mature production process)
 high-temperature steam 700°C–1,000°C
 methane reacts with steam under 3–25 bar pressure
 endothermic reaction
- Steam-methane reforming reaction CH4 + H2O (+ heat) → CO + 3H2
- Water-gas shift reaction
 CO + H2O → CO2 + H2
 (+ small amount of heat)

Explosion potential

Courtesy of Emirates Steel (ES) Abu Dhabi UAE

Direct reduced iron (DRI) or (Natural Gas-NG)-based direct reduction (DR)

Reducing compressor and Process Gas Compressor:

Direct reduced iron (DRI) or (Natural Gas-NG)-based direct reduction (DR)

DRI-Reactor:

Process Gas Heater (left) DR Reactor (right) Courtesy of Emirates Steel (ES) Abu Dhabi UAE

High Pressure Rupture potential

Direct reduced iron (DRI) or (Natural Gas-NG)-based direct reduction (DR)

Process Gas Heater (PGH):

DLS © Didier Schütz 27

Process Gas Heater (left) DR Reactor (right) Courtesy of Emirates Steel (ES) Abu Dhabi UAE

Integral to the production of Direct Reduction Iron (DRI)

DRP cannot work without a PGH

Direct reduced iron (DRI) or (Natural Gas-NG)-based direct reduction (DR)

Direct reduced iron (DRI) or (Natural Gas-NG)-based direct reduction (DR)

Process Gas Heater (PGH):

Process Gas Heater (left) DR Reactor (right) Courtesy of Emirates Steel (ES) Abu Dhabi UAE

Monitoring systems adequate process controls and alarms installed.

Carbon Capture:

- 1. Usually, third party owned and operated facility
- 2. On site / off site
- 3. Fed from the Direct Reduction Plant
- 4. Usually for free
- 5. CO2 is recovered and compressed
- 6. For further injection in oil field

Capture

CO₂

Chemical synthesis Carbon mineralization Algae cultivation

Carbon Recovery

Roof mounted Photovoltaic Solar Panels

Renewable Energy

Risk Aggravating factor

Electric fire

Structural and weather hazards

Open discussion – Q&A

Open discussion – Q&A

Risk Control Practice & Services

Merci (French) Thank You (English) Aw Kohn (Cambodia) 謝謝 (china) 감사합니다 (Korea) Na Som (Douala) Dziękuję (Poland) Bedankt (NL) **ΕΥΧΑΡΙΣΤΩ** (Greece) Dankie (Afrikaner)

Gracias (Spanish) (Arabe) شکرا جزیلا لک Danke (German) Tak (Scandinavia) СПАСИБО (Russia) Grazie (Italy) Ke a Leboga (Botswana) Cảm ơn (Vietnam)

Act local, think global

DLS © Didier Schütz