

DEVELOPMENTS IN THE TUNNELLING INDUSTRY FOLLOWING INTRODUCTION OF THE TUNNELLING CODE OF PRACTICE

Amsterdam 21.September 2011 IMIA Annual Conference

Hartmut Reiner CIP Munich Re – Chairman of ITIG

- The Code then and today (2000 to 2011)
- Experience with tunnelling insurance in the last decade
- current trends
- The Tunnel Code of Practice
- reference projects

Major tunnel losses since 1994

3			
PROJECT	CAUSE	LOSS	DELAY
1994 Great Belt Link, Denmark	Fire	US\$ 33m	-
1994 Munich Metro, Germany	Collapse	US\$ 4m	10 months
1994 Heathrow Express Link, GB	Collapse	US\$ 141m	14 months
1994 Taipei Metro, Taiwan	Collapse	US\$ 12m	12 months
1995 Los Angeles Metro, USA	Collapse	US\$ 9m	15 months
1995 Taipei Metro, Taiwan	Collapse	US\$ 29m	18 months
1999 Hull Sewage Tunnel, UK	Collapse	US\$ 55m	26 months
1999 TAV Bologna – Florence, Italy	Collapse	US\$ 9m	-
1999 Anatolia Motorway, Turkey	Earthquake	US\$ 115m	36 months
2000 Taegu Metro, South Korea	Collapse	US\$ 24m	9 months

Major tunnel losses since 1994

PROJECT	CAUSE	LOSS	DELAY
2000 TAV Bologna – Florence, Italy	Collapse	US\$ 12m	-
2002 Taiwan High Speed Railway	Collapse	US\$ 30m	-
2002 SOCATOP Paris, France	Fire	US\$8m	6 months
2003 Shanghai Metro, PRC	Collapse	US\$ 80m	47 months
2004 Singapore Metro, S'pore	Collapse	US\$ 80m	36 months
2005 Barcelona Metro, Spain	Collapse	US\$ 20m	24 months
2005 Lausanne Metro, Switzerland	Collapse	t.b.a.	-
2005 Lane Cove Tunnel, Sydney	Collapse	US\$ 15m	-
2006 Kaohsiung Metro, Taiwan	Collapse	US\$ 10m	24 months
2007 Sao Paulo Metro, Brazil	Collapse	t.b.a.	10 months
20 major losses	Total >	US\$ 650m	> 280 months

⁵ Yea	ır	Project	Cause	Loss		Delay
1994	4	Great Belt Link	Fire	US\$	33 mio	
1994	4	Munich Metro, Germany	Collapse	US\$	4 mio	10 months
1994	4	Heathrow Express link, GB	Collapse	US\$	141 mio	14 months
1994	4	Metro Taipei, Taiwan	Collapse	US\$	12 mio	
199	5	Metro Los Angeles, USA	Collapse	US\$	9 mio	
199	5	Metro Taipei, Taiwan	Collapse	US\$	29 mio	
1999	9	Hull Yorkshire Tunnel, UK	Collapse	US\$	55 mio	26 months
1999	9	TAV Bologna-Florence, Italy	Collapse	US\$	9 mio	
1999	9	Anatolia Motorway, Turkey	Earthquake	US\$	115 mio	
200	0	Metro Taegu, Korea	Collapse	US\$	24 mio	9 months
200	0	TAV Bologna-Florence, Italy	Collapse	US\$	12 mio	
2002	2	Taiwan Highspeed Railway	Collapse	US\$	30 mio	
2003	3	Shanghai Metro, PRC	Collapse	US\$	80 mio	47 months

6						
	Year	Project	Cause	Loss		Delay
	2003	Detroit Tunnel	Flood			
	2006	Viamala Tunnel	Fire			
	2006	Big Dig Boston	Failure of false ceiling	US\$	166 mio	
	2006	Petrus Tunnel	Cracking of segments	EUR	19,5 mio	
	2008	Stromoyka Tunnel Prague	Collapse			
	2008	Hangzhou Metro	Collapse			
	2008	Glendoe HEP	Collapse	EUR	32,5 mio	
	2008	Guangzhou Metro Line 5 / cross passage	Collapse			
	2008	Cicle Line 4 Singapore	Collapse			
	2008	Tunnel Pécs – M6	Collapse	EUR	10 mio +	
	2009	Brightwater sewer	Collapse	US\$	48 mio	

7						
	Year	Project	Cause	Loss		Delay
	2009	Metro Cologne	Collapse	EUR	365 mio	
	2009	Thirre Tunnel	Collapse	EUR	6,4 mio	
	2010	Cairo Metro	Collapse	EUR	20 mio	
	2010	Blanka Tunnel Prague	Collapse			
	2010	Ettendorfer Tunnel	Collapse	EUR	1 mio +	
	2010	Leak Mead Tunnel	Flood			
	2010	Gilbe II HRT	Collapse			

List from IMIA paper 2006

O/C Y	Project	Type of contract	Method	Type of loss	Cause of loss	€m
1994	Great Belt Link, Denmark		TBM	Ingress of water		32
1994	Munich, Germany		NATM	Collapse	Faulty design(soil)	2
1994	Heathrow Express Link, UK		NATM	Collapse	Faulty workmanship	150
1994	Taipei Metro, Taiwan	7	ТВМ	Ingress of water	Faulty workmanship	12
1995	Los Angeles Metro, USA		твм	Collapse	Faulty workmanship	16
1995	Taipei Metro, Taiwan		ТВМ	Ingress of water	Faulty workmanship	30
1999	Hull Yorkshire Tunnel, UK	design and build	ТВМ	Collapse	Faulty design?	64
1999	Anatolian Highway, Turkey			E/Q	E/Q	121
2000	Taegu Metro, Korea	2	Cut and Cover	Collapse	Faulty design/work	13
2000	TAV Bologne – Florence, Italy		NATM	Collapse		5
2002	Taiwan High Speed Railway	design and build	NATM	Collapse		11
2002	Autoroute A86 – Rueil, France		твм	Fire		11
2003	Shanghai Metro		Freezing	Collapse	Faulty workmanship	69
2004	Singapore Metro, Singapore	design and build	Cut and Cover	Collapse	Faulty design/work	t.b.a.
2005	Barcelona Metro, Spain		NATM	Collapse		t.b.a.
2005	Lausanne Metro, Switzerland			Collapse		t.b.a.
2005	Lane Cove Tunnel, Sydney,		NATM	Collapse		t.b.a.
2005	Kaohsiung Metro, Taipei		твм	Collapse	Faulty workmanship	t.b.a.
	18 major losses				Total	>570

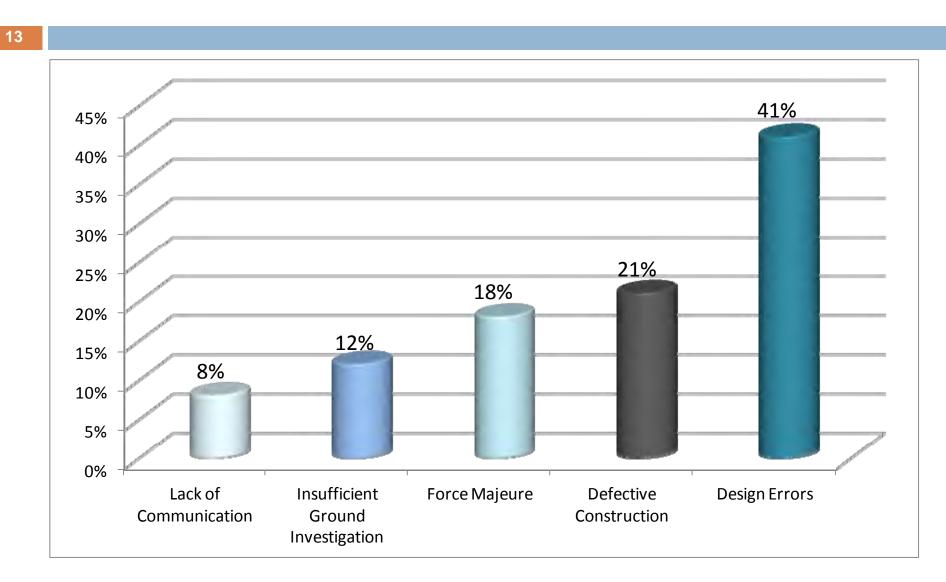
TBM = Tunnelling Boring Machine NATM = New Austrian Tunnelling Method

9						
	Year	Project	Cause	Loss		Delay
	2004	Singapore Metro, Singapore	Collapse	US\$	80 mio	36 months
	2005	Barcelona Metro, Spain	Collapse	US\$		24 months
	2005	Lausanne Metro, Switzerland	Collapse	US\$		
	2005	Lane Cove Tunnel, Sydney	Collapse	US\$		
	2006	Kaoshiung Metro, Taiwan	Collapse	US\$		24 months
	2007	Sao Paolo Metro, Brazil	Collapse	US\$		
	2009	Metro Cologne, Germany	Collapse	US\$		
	1996	Eurotunnel, France / UK	Fire	US\$	375 mio	7 months
	1999	Montblanc Tunnel, CH/A	Fire	US\$	525 mio	36 months
	1999	Tauerntunnel, Austria	Fire	US\$	42 mio	3 months
	2001	Gotthard Tunnel, CH/I	Fire	US\$		2 months
	2002	SOCATOP Paris, France	Fire	US\$	8 mio	6 months
	2008	Eurotunnel, France / UK	Fire	US\$	450 mio	

As if assumptions

	Major tunnel	consequentia	al losses c	lelays in mon	th		with TCoP
0/C Y	Project	Type of contract	Method	Type of loss	Cause of loss	Months	Months
1994	Great Belt Link, Denmark		твм	Ingress of water		12	1
1994	Munich, Germany		NATM	Collapse	Faulty design(soil)	10	
1994	Heathrow Express Link, UK		NATM	Collapse	Faulty workmanship	14	
1994	Taipei Metro, Taiwan		твм	Ingress of water	Faulty workmanship	12	
1995	Los Angeles Metro, USA		твм	Collapse	Faulty workmanship	15	1
1995	Tapei Metro, Taiwan		твм	Ingress of water	Faulty workmanship	18	
1999	Hull Yorkshire Tunnel, UK	Design and build	твм	Collapse	Faulty design?	26	2
1999	Anatolian highway, Turkey			E/Q	E/Q	36	3
2000	Taegu Metro, Korea		Cut and Cover	Collapse	Faulty design/work	9	
2000	TAV Bologne – Florence, Italy		NATM	Collapse		0	
2002	Taiwan High Speed Railway	Design and build	NATM	Collapse		0	
2002	Autoroute A86 – Rueil, France		твм	Fire		6	
2003	Shanghai Metro		Freezing	Collapse	Faulty workmanship	47	4
2004	Singapore Metro, Singapore	Design and build	Cut and Cover	Collapse	Faulty design/work	18	
2005	Barcelona Metro, Spain		NATM	Collapse		24	
2005	Lausanne Metro, Switzerland			Collapse		t.b.a.	t.b.a
2005	Lane Cove Tunnel, Sydney, AUS		NATM	Collapse		0	
2005	Kaohsiung Metro, Taipei		твм	Collapse	Faulty workmanship	24	2
	14 major losses with conseq	uential delay (v	without TCc	P)	Total	271	
	7 major losses with consequ	ential delay (w	ith TCoP)		Total		16

TBM= Tunnelling Boring Machine NATM= New Austrian Tunnelling method E/Q= Earthquake

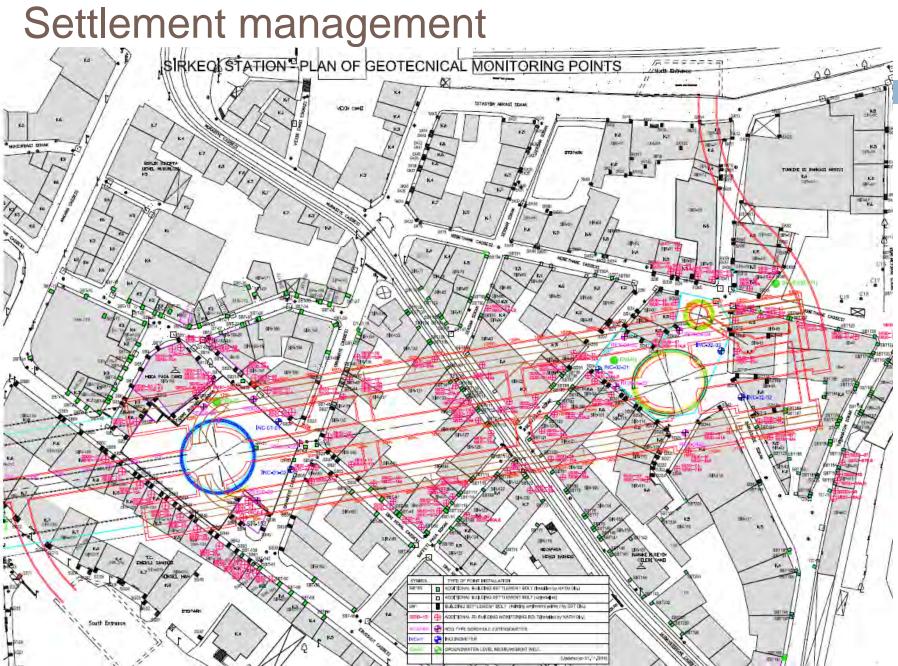

What's the conclusion ?

4	A	D	U	U	
	Year	MD claims	DSU delays	no.	
2	1994	190	24	4	
3	1995	28	0	2	
ŀ	1996	0	0	0	
5	1997	0	0	0	
5	1998	0	0	0	
7	1999	221	65	5	
3	2000	36	9	2	
)	2001	0	2	1	
0	2002	38	6	2	
1	2003	80	47	2	
2	2004	80	36	1	
3	2005	0	24	3	
4	2006	195	24	4	
5	2007	0	0	1	
6	2008	42,5	0	7	
7	2009	54	0	2	
8	2010	0	0	4	
9					

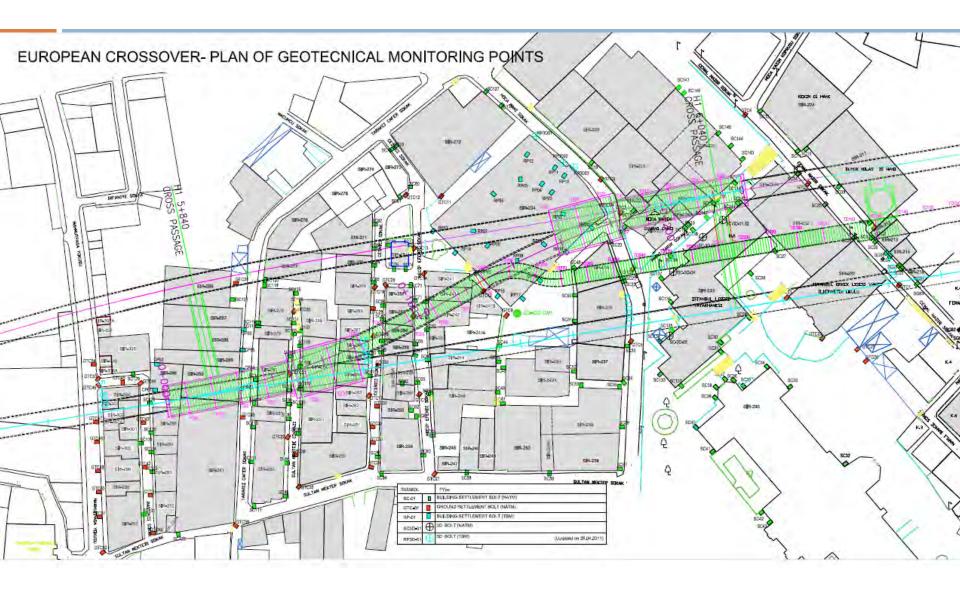
Statistical data

- Plenty of data available, list sometimes mixed up with operational losses
- Plenty of claims settlements still pending
- Conclusions are inconclusive
- It's all about the perception
- The code has worked if only one major claim has been avoided

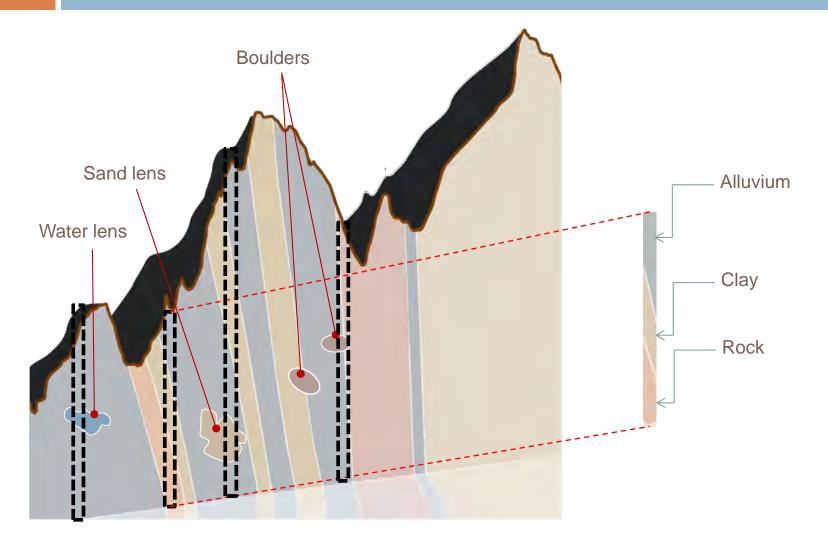
Tunnel Loss Experience Causes of Underground Failures

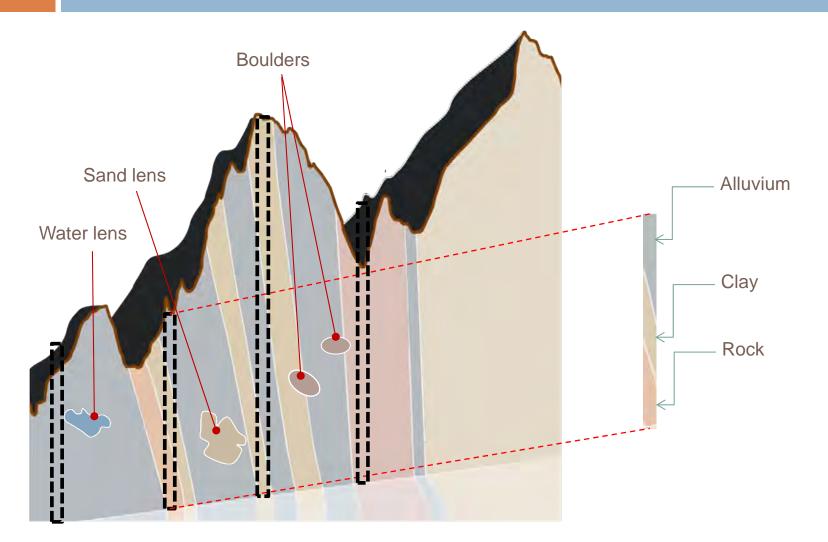

11 years of the code

2000


- Who pays for it ?
- Who does it ?
- It restricts cover !
- It is time consuming holds project up !
- It is another unnecessary check list !
- We don't need insurance to direct the works !
- This a UK thing only !
- Too complicated to work in all environments !

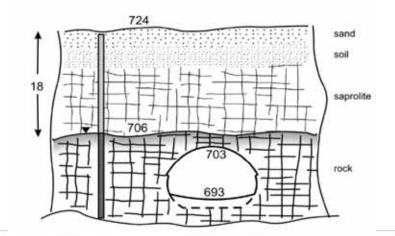
2011


- Insurance panel "share" the cost
- Never even had to threaten with restricted coverage
- Most recommendations are very welcome
- bridges between employer and contractor
- Principals like it more transparency
- Code is (world)widely accepted, mostly understood and appreciated
- Very few cases where it's introduction was opposed
- In few cases as a measure stick against similar or better risk management
- Good brokers rather deal with uw's applying the code
- Monitoring sometimes inadequate
- Code available in all major languages on IMIA website !

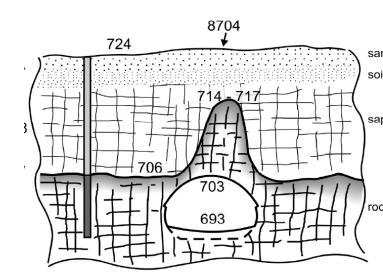

Geotechnical monitoring

Geology + exploration drillings

you can be unlucky too !



Marmaray Project, Turkey



Pinheros

WHAT WAS EXPECTED – ON AVERAGE – CONCERNING ROCK COVER

General trends in the tunnelling industry

- High-risk-type construction methods
- Trend towards more complex tunnels, bigger diameters
- design + build, fixed-price contracts, PPP's
- risk transfer from project owner to contractors
- Tight construction schedules
- insufficient financial budgets of (public) project owners
- Fierce competition in construction industries (globalisation!)

Consequences for the insurance industry

- Insufficient premium income to pay for all the losses
- Repair costs always exceed original construction costs
- Wide scope of cover indemnifies far beyond repair costs (e.g. debris removal, professional fees, loss minimisation, improvements, more adequate construction methods)
- Very long delays in completion
- Insurance is a <u>"cheap risk-management tool"</u>
- Tunnelling insurance in the spot light due to high claims amounts

Tunnelling has become a high tech industry

EPB Shield

Mixshield

Slurryshield

Single Shield TBM

Double Shield TBM

Gripper TBM

Shield with Partial Face Excavation

HDD Rig

A mighty 17.5m or 58ft diameter tunnel will replace Seattle's doubledecked waterfront viaduct

Risk Management Process

I

30 January 2006

A CODE OF PRACTICE FOR

RISK MANAGEMENT OF

TUNNEL WORKS

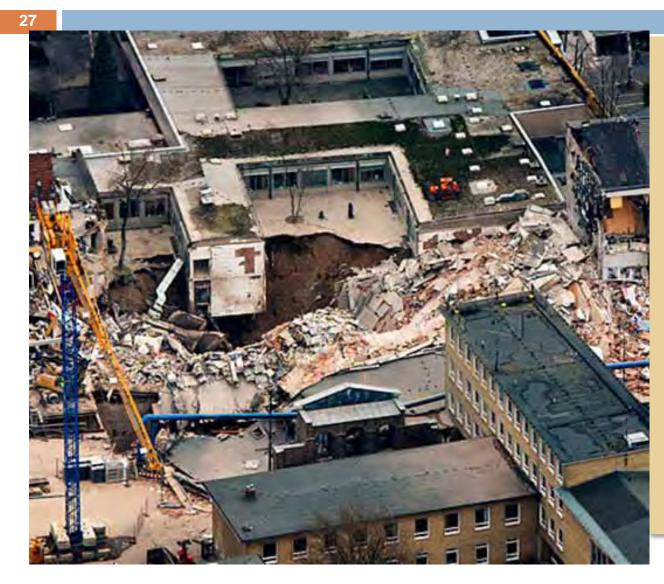
Prepared by The International Tunnelling Insurance Group Project will acknowledge the Code and adopt best practices for the benefit of the project and underwriters.

Formal adoption of the Code is not possible for multiple reasons.

6.3 Risk Management Program

Risk management activities are scheduled as follows (gree Chart under 6.2):

Activity	Date	Main Focus		
Desktop Review	October 2011	Review of all available information as requested by risk engineer		
Site Survey	November 2011	Establishing relationships with project management team, insurers role, project and program review, risk management (implementation of TCoP), H&S plan		


- Implementation of International Construction Codes (e.g. ITIG-Code of Practice)
- Health & safety management
- Security and access control
- Plant Use

Insurers' Risk Control Program SR 99 Tunnel – Alaskan Way Viaduct Replacement Project Issue 1 – September 5, 2011 Page 6 of 21

Conclusions

- Tunnel construction is a journey into the unknown and hence risky
- Loss experience is at an unsustainable and unpredictable level
- Professional risk-management strategies were missing
- TCoP was developed jointly by construction and insurance industries
- More suitable tunnelling clauses are worked upon
- The Code or equivalent risk management tools shall be compulsory to procure CAR cover for future tunnel projects
- Cut and Cover tunnels and boxes collapse too
- **TCoP** must be professionally monitored !
- Risk mitigation is possible, but it comes at a price and is cheaper than cleaning up afterwards

open box structures

Cologne Metro
Germany - 2009

Singapore Metro Singapore - 2004

THANK YOU VERY MUCH FOR YOUR ATTENTION

Hartmut Reiner

