German Committee for Underground Construction e. V.

Project risk management in underground construction

Heinz Ehrbar

Agenda

1. Brief introduction

Why have we developed the DAUB recommendations?

2. Content of the DAUB recommendations

3. Discussion

«Firstly, things turn out differently, and secondly, never as you think» (Wilhelm Busch)

2023: 10 weeks standstill Follo Line Tunnel (Norway)

https://www.acciona.com/updates/articles/acciona-successfully-energization-railway-tunnels-follo-linenorway/?_adin=02021864894

2022: Shaft collapse Metro Sao Paolo, line 6

https://www.reuters.com/world/americas/part-sao-paulo-expressway-collapses-near-metro-construction-site-2022-02-01/

2021: Water ingress at the Lötschberg base tunnel (Switzerland)

© Marc Meschenmoser /SRF

2007: Shaft collapse Metro Sao Paolo, line 4

https://newsbulletin247.com/economy/44444.html

Dramatic incidents prevent project success

Consequences

- In some cases, there were fatalities or serious injuries
- Delays in the construction programme
- Enormous financial losses
- Impairment of third-party property
- Reputational damage for construction method(s), contractors, planners and clients

Risk events do not simply occur, they have a cause

Human error is the main cause of hazardous incidents

Objective hazard pot	ential				
objectively known					unknown
subjectively perceived				unrecognised	
considered			neglected		
Accepted without further measures	Definition of measures		Suppre	ssed risks	
	practical	unsuitab	e		
	used correctly	used incorrectly/not used			
¥	¥	۱			1
accepted residual risks	Safety through measures	Hazards from incorrect hu	man actions <i>i</i>	non-actions	Force majeure
Incindents		Incid	ents		
Quantity 25%		Quantity	75%		
Material damage 10%		Material damage	90%		
Personal injury 15%		Personal injury	85%		
		according to: Schneider, Jörg; Safety and reliability	n construction: Basic know	vledge for	

IMIA: Tunnel Loss Experience Causes of Underground Failures

Source: Reiner, Hartmut; Developments in the tunnelling industry following introduction of the tunnelling code of practice, IMIA Annual Conference, Amsterdam, 21. September 2011

Lack of risk awareness led to serious problems in underground construction (2006 ff.)

Version-of-the-Tunnelling-CoP.pdf

Importance of risk management in national design and construction specifications

Mention of the word "risk / risks" in relevant performance models

HOAI Germany

SIA 112 Switzerland

 \mathbf{O}

3

The hierarchy of risk management

Strategic CRM

Project risk

management

(operational risk management)

Process-orientated RM

- Occupational health and safety

- IT security (ISO 27001) - Reporting security

- Environmental safety (ISO 14001)

Based on ONR 49000

Strategic risk management Company level (must fulfil the legal requirements)

Ensure compatibility through mutual coordination

Operational risk management at the project management level (regulated in the client's QM system)

Define harmonised targets and measurement and control parameters

Risk management in the provision of services (regulated in standards, guidelines, work instructions)

Risk management

The DAUB recommendations

Objectives and scope of the recommendations

Scope of the recommendations

The Recommendations are intended for everyone involved in the project (owner, designer, contractor, third party) for all work phases of a project, to:

- 1. demonstrate the imperative need for phasespecific project risk management,
- 2. clarify their role-specific duties and responsibilities for each project phase, and
- 3. introduce common, easy-to-use methods and tools for project risk management.

The Recommendations are applicable:

- principally, for all construction works,
- during all project phases from basic determination to commissioning,
- for all trades of the civil works,
- for all contract models in construction.

The basic principle of project risk management

Risk management Risks Threats **Opportunities** Event 👍 Event **Project requirements** Processes fulfilled (= project objectives achieved) measures define and implement measures to ... to to utilise control opportunities

Project idea with requirements (formulate project goals)

The curve of knowledge gain

The additional knowledge gained helps to better achieve the project goals

Know ledge

without project risk management

with project risk management

Project risk management methodology; Implementation of the ISO 31000 process

Establishing the project context

Typical cause / impact relationship

Ground conditions and existing but	ildings
Legal basis and anychanges	
Procedure	
Financing	
Politics / Economy	
Planning / Design	
Execution	
Buildingsupervision	
Order changes	
Contractual risks	
Interfaces	
Operation of nearby plants	
Natural hazards/accidents/incidents	
Force majeure	

11 Project requirements

Guarantee agreed quality
Ensuring occupational health and safety
Protecting the environment from damage
Creating public and political acceptance
Ensure compliance with laws/ standards and guidelines
Protection of infrastructure and third-party rights
Guarantee of capacity in the existing network (operating programme/infrastructure)
Efficient structural and process organisation
Veeting the deadline targets
Compliance with cost targets

Ensure ordered functionality

Risk identification

DAUB

- Risk workshops (with structured what-if analysis, SWIFT)
- Brainstorming Brainwriting
- Checklists
- Evaluation of existing risk registers
- Exchange of experience with project organisations with similar tasks
- Obtain expert opinions (Delphi method) / Four-eyes principle
- Interviews
- Literature study / case studies

Picture: Wikipedia/tamara semina

Risk analysis

Semiquantitative method

	Probability P			
Impact I	very low	low	medium	high
high	4	8	12	16
medium	3	6	9	12
low	2	4	6	8
very low	1	2	3	4

Quantifying the impact (per objective) in classes

Qualitative assessment of probability in classes

Semiquantitative method

Risk assessment

	Probability P			
Impact I	very low	low	medium	high
high	4	8	12	16
medium	3	6	9	12
low	2	4	6	8
very low	1	2	3	4

Additional measures absolutely necessary

Acceptance line

Emergency measures absolutely necessary

No additional measures - observe

Risk analysis and risk assessment

Quantitative method (for specific questions)

http://www.geomod.ch/geoprest/?DAT_-_Decision_Aids_for_Tunnelling,

Ehrbar, H., Beeler, P., Neuenschwander, M., Bianchi, (2010, Proceedings ITA World Tunnel Congress, 2010 Vancouver

How to implement? The risk register as the key management tool

Options for action

Example of mitigation measures for underground construction projects (not exhaustive)

Action two	Action strategy				
	avoid	reduce	transfer		
Appropriate Resources	 Use of qualified, experienced staff / continuous training Use of proven device types (state of the art) Use of new devices 	 Provision of special teams (e.g. injections,) Provision of (special) devices (e.g. injection devices, pumps,) 			
Material Measures	 Optimization of alignment Careful planning, taking safety and environmental aspects into account Use of safe, proven construction methods and installations suitable choice of material 	 Appropriate site investigations Optimization of alignment Systematic exploratory drilling in advance and monitoring during excavation 			
Organizational measures	 Define a clear risk policy (acceptance lines / alarm values) Systematic implementation controls Foureyes principle / Strategic Review Panel Provision of expert teams 	 Organization of rescue services Alliance contract Provision of expert teams 	 Contractually agreed risk allocation (e.g. SIA 118/198) Insurance coverage 		

Communication of threats depending on the impact and decision-making level

IMIA Webinar

Risk Communication

Each individual hazard must be countered with suitable and measures

Nevertheless, risk events can occur

Communication in the case of incidents

Typical ground related hazard scenarios 1/3

Hazard scenario	conventional	mechanical	Mitigation measures
Rockfall			 Rock cleaning Head protection at a minimum angle of 180°, immediately after the cavity is opened
Breakdown			 Installation of a sufficiently dimensioned ground support
Downfall			 Installation of a sufficiently dimensioned ground support if necessary, ground improvement measures

Image source: BLS AT, final report on rock mechanics, excavation, stabilisation, 2009

Typical ground related hazard scenarios 2/3

Hazard scenario	conventional	mechanical	Mitigation measures
Stress-induced detachment/ Rock burst			 Waiting time Customised rock support after each round Possible expansion holes Installation of steel ribs Anchors with high expansion capacity
Unstable tunnel face	© IG GBTS		 Drainage holes Support of the tunnel face with long, grouted self-drilling anchors Selection of a TBM with sufficient face support (in loose material)
Sinkholes		Kovari/Bosshard: Zimmerberg Tunnel	 Pipe umbrella / large pipe umbrella via TBM tunnelling Conventional support of the face with long, grouted self- drilling anchors Selection of a TBM with sufficient face support (in loose material)

Image source in general: BLS AT, final report on rock mechanics, excavation, stabilisation, 2009

Typical ground related hazard scenarios 3/3

Hazard scenario	conventional	mechanical	Mitigation measures
High deformations / High ground pressures (Squeezing or swelling rock)	© IG GBTS		 Installation of a deformable break- out protection Additional cut-out for deformations (overcut with TBM) Reprofiling if necessary
Water pressure (local)	The second secon	y to	 flow-reducing injections Ground freezing Drainage holes
Sudden water ingress at high pressure			 flow-reducing injections Preliminary drainage holes

Image source: BLS AT, final report on rock mechanics, excavation, stabilisation, 2009

Who has what responsibility? - Key role of the client

The client is the first to come into contact with the project and must initiate the process. Project risk management is one of the project manager's management tasks!

All internal partners must be integrated and, if necessary (depending on the context), also external partners to the project.

Phase-related goals of project risk management

Phase-related goals of project risk management						
Project stages AHOService phases (HOAI)(general process)(Design services)		Goals (Design and construction)	Goals Risk management			
4 Initiation	0 Analysis of the needs	Needs, goals and framew ork conditions defined, solution strategy determined	-			
1. Initiation	1 Collection of the basics	Clarification of the task (project planning basics/inventory)	Risk management implemented by the owner			
	2 Feasibility design	Proof of the feasibility of the best variant cost estimate	Risk analysis carried out for all variants, risk costs recorded for the first time in the cost estimate			
2. Design	3 Preliminary design	Project optimized and described ready for implementation, deadlines defined, cost calculation	Detailed risk analysis including planning of measures carried out - risk costs recorded in cost calculation			
	4 Technical design	Obtaining of all planning approvals	Acceptance risks eliminated			
	5 Detailed design	Definition of the project with construction drawings and workshop drawings	Risk-reducing/opportunity-utilizing measures included in the implementation plan			
3. Procurement	6 Procurement	Contract model and risk limitation defined Qualification and aw ard criteria defined	Handover of the findings from the client's risk analysis to the bidders			
	7 Contract aw ard	Selection of the contracor taking into account the most advantageous offer	Selection of the contractor, taking into account his contribution to the exploitation of opportunities/threats prevention			
4. Construction	8 Object supervision - construction supervision and documentation	Structure realised according to the work contract, in compliance with all project requirements	Im plementation of an integral risk management including all parties involved - final evaluation			
5. Commissioning	9 Asset managment	Ensure operation Maintain usability and value	Consider operational experience for risk management of future projects			

Please support the implementation of project risk management!

«.... so that in future we no longer fall short of what we have achieved but, on the contrary, that those to come do even better than us!» Mr. Sulzer Ziegler, Breakthrough of the Simplon Tunnel, 1905

Many thanks

Picture: IG-GBTS